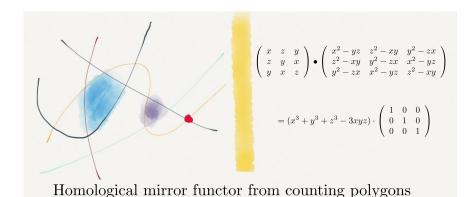
Calabi-Yau Geometry and Mirror Symmetry Conference



Cheol-Hyun Cho (Seoul National Univ.)
(based on a joint work with Hansol Hong and Siu-Cheong Lau)

Mirror Symmetry between two spaces

 Mirror symmetry explains certain relations between symplectic geometry and complex geometry

Mirror Symmetry between two spaces

- Mirror symmetry explains certain relations between symplectic geometry and complex geometry
- ▶ Very first example, (found by Candelas, de la Ossa, Green, Parkes) is mirror symmetry between Calabi-Yau hypersurface in \mathbb{P}^4

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 = 0,$$

and another hypersurface in $\mathbb{P}^4/(\mathbb{Z}/5)^3$

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 - \sigma x_1 x_2 x_3 x_4 x_5 = 0.$$

Mirror Symmetry between two spaces

- Mirror symmetry explains certain relations between symplectic geometry and complex geometry
- ▶ Very first example, (found by Candelas, de la Ossa, Green, Parkes) is mirror symmetry between Calabi-Yau hypersurface in \mathbb{P}^4

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 = 0,$$

and another hypersurface in $\mathbb{P}^4/(\mathbb{Z}/5)^3$

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 - \sigma x_1 x_2 x_3 x_4 x_5 = 0.$$

▶ Holomorphic curve counting invariants of *X* equals certain period integrals of *Y*.

Mirror Symmetry between a space and a function

- ▶ Another version of mirror symmetry relates space X, with a **potential function** $W: Y \to \mathbb{C}$ on Y.
- ▶ Simplest example is the case of sphere.

$$\mathbb{C}P^1 \longleftrightarrow (W : \mathbb{C}^* \to \mathbb{C})$$

$$W(z) = z + \frac{q}{z}.$$

Mirror Symmetry between a space and a function

- Another version of mirror symmetry relates space X, with a potential function W: Y → C on Y.
- Simplest example is the case of sphere.

$$\mathbb{C}P^1 \longleftrightarrow (W : \mathbb{C}^* \to \mathbb{C})$$

$$W(z) = z + \frac{q}{z}.$$

▶ Quantum cohomology of $\mathbb{C}P^1$ is isomorphic to the Jacobian ring of W; $\mathbb{C}[z,z^{-1}]/\partial W$.

$$\partial W = 1 - \frac{q}{z^2}$$

gives $z^2 = q$, which corresponds to $[pt] *_Q [pt] = q[S^2]$.

▶ This example generalizes to all toric manifolds.

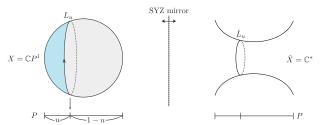
Strominger-Yau-Zaslow views **mirror symmetry** as relations between **Dual torus fibrations** .

Strominger-Yau-Zaslow views **mirror symmetry** as relations between **Dual torus fibrations** .

• This point of view been extremely successful in **explaining mirror symmetry** in basic cases (such as torus bundles, toric manifolds/orbifolds, toric CY's or with mild singular fibers).

Strominger-Yau-Zaslow views **mirror symmetry** as relations between **Dual torus fibrations** .

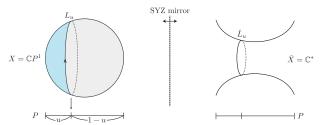
• This point of view been extremely successful in **explaining mirror symmetry** in basic cases (such as torus bundles, toric manifolds/orbifolds, toric CY's or with mild singular fibers).



• The singularity of the torus fibration is measured by holomorphic discs, defining $W(z) = z + \frac{q}{z}$.

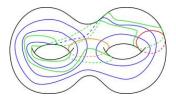
Strominger-Yau-Zaslow views **mirror symmetry** as relations between **Dual torus fibrations** .

• This point of view been extremely successful in **explaining mirror symmetry** in basic cases (such as torus bundles, toric manifolds/orbifolds, toric CY's or with mild singular fibers).



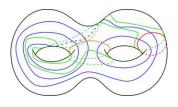
- The singularity of the torus fibration is measured by holomorphic discs, defining $W(z) = z + \frac{q}{z}$.
- It becomes more difficult to use when fibers get more singular.

Fukaya category of a surface Σ



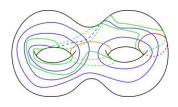
▶ Objects: Transversal family of embedded Curves L_0, L_1, L_2, \cdots (non-contractible)

Fukaya category of a surface Σ



- ▶ Objects: Transversal family of embedded Curves L_0, L_1, L_2, \cdots (non-contractible)
- ▶ $Hom(L_i, L_j)$ is generated by intersection points $L_i \cap L_j$. $Hom(L_i, L_i)$ is given by a Morse complex of $L_i \cong S^1$

Fukaya category of a surface Σ

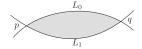


- ▶ Objects: Transversal family of embedded Curves L_0, L_1, L_2, \cdots (non-contractible)
- ► $Hom(L_i, L_j)$ is generated by intersection points $L_i \cap L_j$. $Hom(L_i, L_i)$ is given by a Morse complex of $L_i \cong S^1$
- ▶ There are operations on Morphisms: differential m_1 , product m_2 , homotopy for associativity m_3 , ..., which defines an A_{∞} -category.

▶ (Differential *m*₁)

$$m_1: Hom(L_0, L_1) \rightarrow Hom(L_0, L_1)$$

counts immersed **bi-gons** with boundaries on L_0 and L_1 .

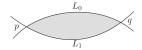


$$m_1(p) = q \cdot T^{\text{Area}}.$$

▶ (Differential *m*₁)

$$m_1: Hom(L_0, L_1) \rightarrow Hom(L_0, L_1)$$

counts immersed **bi-gons** with boundaries on L_0 and L_1 .



>

$$m_1(p) = q \cdot T^{\text{Area}}$$
.

▶ We use Novikov ring

$$\Lambda = \{ \sum a_i T^{\lambda_i} \mid a_i \in \mathbb{C}, \lim_{i \to \infty} \lambda_i = \infty \}$$

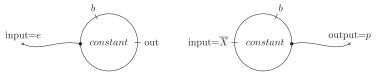
Corners of the bigon should be locally convex

▶ (Product *m*₂)

$$\mathit{m}_2: \mathit{Hom}(\mathit{L}_0, \mathit{L}_1) \times \mathit{Hom}(\mathit{L}_1, \mathit{L}_2) \rightarrow \mathit{Hom}(\mathit{L}_0, \mathit{L}_2)$$

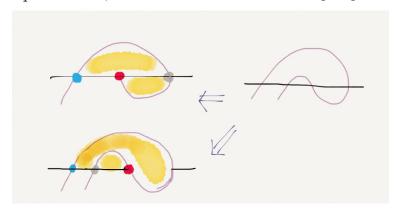
counts **triangles** with boundaries on L_0 and L_1 and L_2 .

▶ In general (if $L_i = L_j$), we also count with additional Morse trajectory contributions.



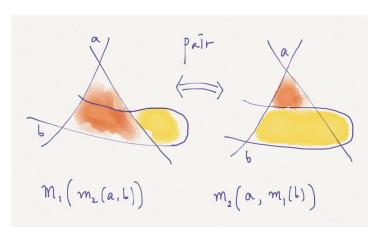
Differential $m_1^2 = 0$

• $m_1^2 = 0$ can be proved, since there are two matching diagrams.



▶ These satisfy product rule (up to \pm):

$$m_1(m_2(a,b)) = m_2(m_1(a),b) + m_2(a,m_1(b))$$



▶ In general, we can define m_k counting k-gons with areas.

- ▶ In general, we can define m_k counting k-gons with areas.
- ▶ m_1, m_2, m_3, \cdots satisfy A_{∞} -equations. Given n-inputs x_1, \cdots, x_n ,

$$\sum_{k_1+k_2=n+1} m_{k_1}(x_1, \cdots, m_{k_2}(\cdots), \cdots, x_n) = 0$$

- ► Fukaya category can be defined in any symplectic manifold:
 - Objects are Lagrangian submanifolds, and Morphisms are their intersection points, and operations by counting *J*-holomorphic polygons.

Matrix Factorization Category

► Given a (Laurant) polynomial W, for example,

$$W(z) = z^{n}$$

$$W(x,y,z) = x^{3} + y^{3} + z^{3} - 3xyz$$

$$W(z) = z + \frac{q}{z}$$

Matrix Factorization Category

▶ Given a (Laurant) polynomial W, for example,

$$W(z) = z^{n}$$

$$W(x, y, z) = x^{3} + y^{3} + z^{3} - 3xyz$$

$$W(z) = z + \frac{q}{z}$$

- ▶ We explain a category of Matrix factorization of W.
- ► Consider a factorization of the polynomial W: For example, for $W = z^5$ with critical value 0,

$$W-0=z^i\bullet z^{5-i}$$

Matrix Factorization Category

▶ Given a (Laurant) polynomial W, for example,

$$W(z) = z^{n}$$

$$W(x, y, z) = x^{3} + y^{3} + z^{3} - 3xyz$$

$$W(z) = z + \frac{q}{z}$$

- ▶ We explain a category of **Matrix factorization of** *W*.
- ► Consider a factorization of the polynomial W: For example, for $W = z^5$ with critical value 0,

$$W-0=z^i \bullet z^{5-i}$$

For $W=z+rac{q}{z}$, it has a critical value $\lambda=2\sqrt{q}$ and

$$W - \lambda = (z - \sqrt{q}) \bullet (1 - \frac{\sqrt{q}}{z})$$

Matrix Factorizations

- ▶ We can factor W into two matrices as follows.
- ► For $W = x^3 + y^3 + z^3 3xyz$, we have

$$\begin{pmatrix} x & z & y \\ z & y & x \\ y & x & z \end{pmatrix} \bullet \begin{pmatrix} x^2 - yz & z^2 - xy & y^2 - zx \\ z^2 - xy & y^2 - zx & x^2 - yz \\ y^2 - zx & x^2 - yz & z^2 - xy \end{pmatrix}$$
$$= W \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} W & 0 & 0 \\ 0 & W & 0 \\ 0 & 0 & W \end{pmatrix}$$

Matrix Factorizations

- We can factor W into two matrices as follows.
- ► For $W = x^3 + y^3 + z^3 3xyz$, we have

$$\begin{pmatrix} x & z & y \\ z & y & x \\ y & x & z \end{pmatrix} \bullet \begin{pmatrix} x^2 - yz & z^2 - xy & y^2 - zx \\ z^2 - xy & y^2 - zx & x^2 - yz \\ y^2 - zx & x^2 - yz & z^2 - xy \end{pmatrix}$$
$$= W \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} W & 0 & 0 \\ 0 & W & 0 \\ 0 & 0 & W \end{pmatrix}$$

▶ We have matrices M_0 , M_1 such that

$$M_0 \bullet M_1 = W \cdot Id$$
, $M_1 \bullet M_0 = W \cdot Id$.

- ▶ Let $R = \mathbb{C}[x, y, z]$ polynomial ring. Write $R \oplus R \oplus R = R^{\oplus 3}$
- Consider the matrices as maps

$$R^{\oplus 3} \xrightarrow{M_0} R^{\oplus 3} \xrightarrow{M_1} R^{\oplus 3}$$

▶ Matrix factorization of W is two R-modules P_0 , P_1 with maps

$$d: P_0 \rightarrow P_1, d: P_1 \rightarrow P_0$$

 $d^2 = (W - \lambda)Id.$

- ▶ Let $R = \mathbb{C}[x, y, z]$ polynomial ring. Write $R \oplus R \oplus R = R^{\oplus 3}$
- Consider the matrices as maps

$$R^{\oplus 3} \xrightarrow{M_0} R^{\oplus 3} \xrightarrow{M_1} R^{\oplus 3}$$

▶ Matrix factorization of W is two R-modules P_0 , P_1 with maps

$$d: P_0 \rightarrow P_1, d: P_1 \rightarrow P_0$$

 $d^2 = (W - \lambda)Id.$

Given two matrix factorizations,

$$R^{\oplus n} \xrightarrow{M_0} R^{\oplus n} \xrightarrow{M_1} R^{\oplus n} \xrightarrow{M_0}$$

$$R^{\oplus m} \xrightarrow{N_0} R^{\oplus m} \xrightarrow{N_1} R^{\oplus m} \xrightarrow{M_0}$$

 Given two matrix factorizations, we define morphisms between them

$$R^{\oplus n} \xrightarrow{M_0} R^{\oplus n} \xrightarrow{M_1} R^{\oplus n} \xrightarrow{M_0}$$

$$\downarrow f \qquad \downarrow f \qquad \downarrow f$$

$$R^{\oplus m} \xrightarrow{N_0} R^{\oplus m} \xrightarrow{N_1} R^{\oplus m} \xrightarrow{M_0}$$

▶ Differential m_1 on Morphisms by

$$N_i \circ f - f \circ M_i$$

- m₂ is the composition of maps.
- ▶ This defines **differential graded category**, which is an A_{∞} -category with $m_{>3} = 0$.

 Given two matrix factorizations, we define morphisms between them

$$R^{\oplus n} \xrightarrow{M_0} R^{\oplus n} \xrightarrow{M_1} R^{\oplus n} \xrightarrow{M_0}$$

$$\downarrow f \qquad \downarrow f \qquad \downarrow f$$

$$R^{\oplus m} \xrightarrow{N_0} R^{\oplus m} \xrightarrow{N_1} R^{\oplus m} \xrightarrow{M_0}$$

▶ Differential m_1 on Morphisms by

$$N_i \circ f - f \circ M_i$$

- m₂ is the composition of maps.
- ▶ This defines **differential graded category**, which is an A_{∞} -category with $m_{\geq 3} = 0$.
- $\qquad \mathsf{MF}(W) := \coprod_{\lambda \in \mathit{Crit}(W)} \mathsf{MF}(W, \lambda)$
- ▶ It is also called the category of singularity of *W*.

In this setting, Homological mirror symmetry conjectures:

ullet There exist a derived equivalence between the geometric A_{∞} -category to the algebraic dg-category:

Fukaya Category of $X \leftrightarrow \text{Matrix Fact.}(W)$

In this setting, Homological mirror symmetry conjectures:

ullet There exist a derived equivalence between the geometric A_{∞} -category to the algebraic dg-category:

Fukaya Category of $X \leftrightarrow \text{Matrix Fact.}(W)$

- ullet An enhanced version may be an A_{∞} -functor from one to the other.
- A Lagrangian submanifold *L* would correspond to a Matrix factorization.

In this setting, Homological mirror symmetry conjectures:

 \bullet There exist a derived equivalence between the geometric $A_{\infty}\text{-category}$ to the algebraic dg-category:

Fukaya Category of $X \leftrightarrow \text{Matrix Fact.}(W)$

- ullet An enhanced version may be an A_{∞} -functor from one to the other.
- A Lagrangian submanifold *L* would correspond to a Matrix factorization.
- Intersection between Lagrangian submanifolds gives a Morphism between MF's.

In this setting, Homological mirror symmetry conjectures:

ullet There exist a derived equivalence between the geometric A_{∞} -category to the algebraic dg-category:

Fukaya Category of
$$X \leftrightarrow \text{Matrix Fact.}(W)$$

- ullet An enhanced version may be an A_{∞} -functor from one to the other.
- A Lagrangian submanifold *L* would correspond to a Matrix factorization.
- Intersection between Lagrangian submanifolds gives a Morphism between MF's.
- There exist an A_{∞} functor relating A_{∞} -operations on X and dg-operations on MF(W).

Localized Mirror functor

We propose a new formalism to understand mirror symmetry:

Localized mirror functors

Localized Mirror functor

We propose a new formalism to understand mirror symmetry:

Localized mirror functors

The formalism works as follows.

1. A good (weakly unobstructed) Lagrangian immersion $L \subset X$ \mapsto Potential W_L .

Localized Mirror functor

We propose a new formalism to understand mirror symmetry:

Localized mirror functors

The formalism works as follows.

- 1. A good (weakly unobstructed) Lagrangian immersion $L \subset X$ \mapsto Potential W_L .
 - W_L is defined by counting J-holomorphic polygons with boundary on L.

Localized Mirror functor

We propose a new formalism to understand mirror symmetry:

Localized mirror functors

The formalism works as follows.

- 1. A good (weakly unobstructed) Lagrangian immersion $L \subset X$ \mapsto Potential W_L .
 - W_L is defined by counting J-holomorphic polygons with boundary on L.
- 2. Each such L gives rise to a canonical functor \mathcal{LM}^L :

$$\mathcal{LM}^L: \mathcal{F}uk(X) \longrightarrow Mat.Fact.(W_L)$$

constructed from geometric data (via Fukaya category operations)

Localized Mirror functor

We propose a new formalism to understand mirror symmetry:

Localized mirror functors

The formalism works as follows.

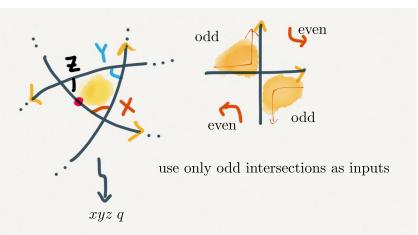
- 1. A good (weakly unobstructed) Lagrangian immersion $L \subset X$ \mapsto Potential W_L .
 - W_L is defined by counting J-holomorphic polygons with boundary on L.
- 2. Each such L gives rise to a canonical functor \mathcal{LM}^L :

$$\mathcal{LM}^L: \mathcal{F}uk(X) \longrightarrow \mathit{Mat.Fact.}(W_L)$$

constructed from geometric data (via Fukaya category operations)

3. If \mathcal{LM}^L is an equivalence, this would prove homological mirror symmetry (**Generalized SYZ**).

Potential W_L from Lagrangian Immersion L



Define W by counting Polygons recording corners, and areas passing through a generic point

W_L as Lagrangian Floer Potential

▶ Given a Lagrangian immersion L, consider its A_{∞} -algebra, and degree one immersed generators X_1, \dots, X_n .

W_L as Lagrangian Floer Potential

- ▶ Given a Lagrangian immersion L, consider its A_{∞} -algebra, and degree one immersed generators X_1, \dots, X_n .
- Suppose that

$$b = x_1 X_1 + x_2 X_2 + \cdots + x_n X_n$$

becomes weak bounding cochains, or

$$m_1(b) + m_2(b, b) + m_3(b, b, b) + \cdots = W(b) \cdot e$$

is a multiple of unit.

W_L as Lagrangian Floer Potential

- ▶ Given a Lagrangian immersion L, consider its A_{∞} -algebra, and degree one immersed generators X_1, \dots, X_n .
- Suppose that

$$b = x_1 X_1 + x_2 X_2 + \cdots + x_n X_n$$

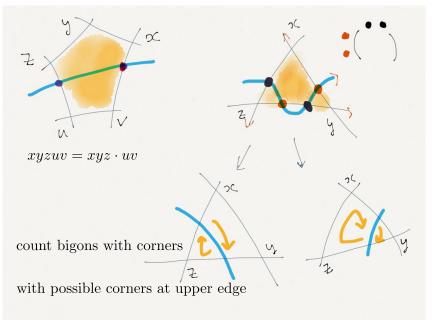
becomes weak bounding cochains, or

$$m_1(b) + m_2(b, b) + m_3(b, b, b) + \cdots = W(b) \cdot e$$

is a multiple of unit.

▶ Then, the coefficient W(b) is a function in $\Lambda[[x_1, \dots, x_n]]$, defines localized mirror of L.

Matrix Factorization corresponding to L_1



Matrix Factorization corresponding to L_1

In general, consider L_1 transversely intersecting the immersed Lagrangian L.

- ▶ Intersection $L_1 \cap L$ consists of even and odd intersection points.
- We count bigons allowing odd degree turns at the upper boundary.

$$m_1^{b,0}(p) = \sum_{k=0}^{\infty} m_{k+1}(b,b,b,b,b,\cdots,b,p)$$

- counting the bigon gives an element $\Lambda_0[x_1, \dots, x_n]$.
- ▶ This deformed complex

$$(CF((L,b),L_1),m_1^{b,0})$$

satisfies $(m_1^{b,0})^2 = W(b)$, providing the matrix factorization of W(b).

Localized mirror functor

We define an A_{∞} -functor

$$\phi_L: \mathcal{F}uk(X) \to MF(W_L)$$

Say ϕ_L sends Lagrangian L_j to Matrix factorizations M_j .

$$(\phi_L)_1: CF(L_i, L_j) \rightarrow Mor(M_i, M_j)$$

 $(\phi_L)_1(p_{ii})(\cdot) = \pm m_2^{b,0,0}(\cdot, p_{ii})$

In general we define

$$(\phi_L)_k : CF(L_1, L_2) \otimes \cdots \otimes CF(L_{k-1}, L_k) \to Mor(M_1, M_k)$$
$$(\phi_L)_k(p_{12}, p_{23}, \cdots, p_{(k-1)k})(\cdot) = \pm m_{k+1}^{b,0,\cdots,0}(\cdot, p_{12}, p_{23}, \cdots, p_{(k-1)k})$$

Example of orbi-spheres

Cubic mirror symmetry:

$$x^3+y^3+z^3=0 \quad \text{in} \quad \mathbb{P}^2$$

$$\longleftrightarrow x^3+y^3+z^3-\sigma xyz=0 \quad \text{in} \quad \mathbb{P}^2/(\mathbb{Z}/3)$$

Example of orbi-spheres

Cubic mirror symmetry:

$$x^3+y^3+z^3=0 \quad \text{in} \quad \mathbb{P}^2$$

$$\longleftrightarrow x^3+y^3+z^3-\sigma xyz=0 \quad \text{in} \quad \mathbb{P}^2/(\mathbb{Z}/3)$$

- 1. Zero set of $x^3 + y^3 + z^3 = 0$ in \mathbb{P}^2 gives the elliptic curve E (three copy of E).
- 2. The relationship between the Kähler parameter q and complex parameter σ was explained by Siu-Cheong Lau.

Example of orbi-spheres

Cubic mirror symmetry:

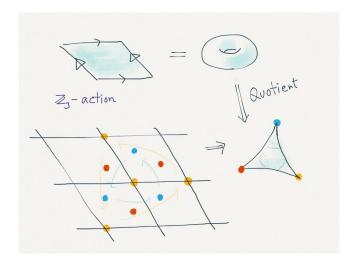
$$x^3+y^3+z^3=0 \quad \text{in} \quad \mathbb{P}^2$$

$$\longleftrightarrow x^3+y^3+z^3-\sigma xyz=0 \quad \text{in} \quad \mathbb{P}^2/(\mathbb{Z}/3)$$

- 1. Zero set of $x^3 + y^3 + z^3 = 0$ in \mathbb{P}^2 gives the elliptic curve E (three copy of E).
- 2. The relationship between the Kähler parameter q and complex parameter σ was explained by Siu-Cheong Lau.
- 3. Further quotient by $\mathbb{Z}/3$ -action, gives an orbi-sphere $\mathbb{P}^1_{3,3,3}$.

Quotient orbi-sphere $\mathbb{P}^1_{3,3,3}$

We take a \mathbb{Z}_3 quotient of the elliptic curve



Main example

Our first goal is to define mirror potential W of the form

$$W(x, y, z) = x^3 + y^3 + z^3 - \sigma xyz$$

so that we have mirror symmetry

Eliptic curve
$$\longleftrightarrow$$
 $(W:(\mathbb{C}^3/\mathbb{Z}_3)\to\mathbb{C})$

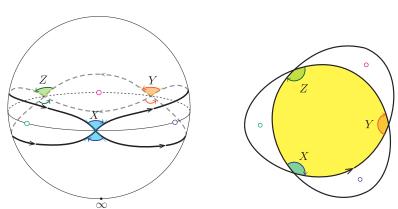
or

Eliptic curve/
$$\mathbb{Z}_3 \longleftrightarrow (W : \mathbb{C}^3 \to \mathbb{C})$$

In general, we consider $X=\mathbb{P}^1_{a,b,c}$ and prove homological mirror symmetry between $X=\mathbb{P}^1_{a,b,c}$ and $W=x^a+y^b+z^c-\sigma xyz+\cdots$ when $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1$, by constructing a mirror functor.

Immersed Lagrangian

Our main object is the following immersed curve in the orbi-sphere (Seidel considered such Lagrangian immersion to prove HMS for genus two curve)



Proposition

Proposition

Seidel Lagrangian in $\mathbb{P}^1_{a,b,c}$ is weakly unobstructed

• To prove this, consider a (k+1)-gon P used in $m_k(b, \dots, b)$, whose corners are given by odd degree generators and output is an even degree immersed generator.

Proposition

- To prove this, consider a (k+1)-gon P used in $m_k(b, \dots, b)$, whose corners are given by odd degree generators and output is an even degree immersed generator.
- By reflection across equator, we get another polygon P^{op} , which also contribute to $m_k(b, \dots, b)$.

Proposition

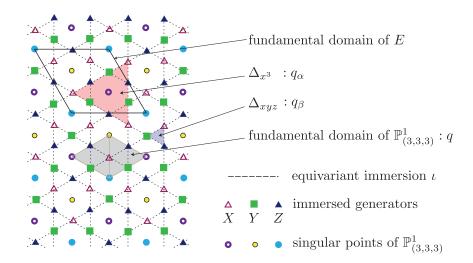
- To prove this, consider a (k+1)-gon P used in $m_k(b, \dots, b)$, whose corners are given by odd degree generators and output is an even degree immersed generator.
- By reflection across equator, we get another polygon P^{op} , which also contribute to $m_k(b, \dots, b)$.
 - 1. Reflection preserves the orientation of the Lagrangian, but the complex orientation is the opposite, which gives rise to $(-1)^k$

Proposition

- To prove this, consider a (k+1)-gon P used in $m_k(b, \dots, b)$, whose corners are given by odd degree generators and output is an even degree immersed generator.
- By reflection across equator, we get another polygon P^{op} , which also contribute to $m_k(b, \dots, b)$.
 - 1. Reflection preserves the orientation of the Lagrangian, but the complex orientation is the opposite, which gives rise to $(-1)^k$
 - 2. The number of times P or P^{op} passes through generic point (for non-standard spin structure) is $k+1 \mod 2$. (If P and P^{op} covers minimal edges 6l times, then P covers, 3l times. But each edge of P consists of odd number of minimal edges. Hence $l=k+1 \mod 2$.)

Immersed Lagrangian Upstairs

Immersed curve are straight lines in the universal cover.



miracle Generating function: W = \(\sum_{\beta} \) \(n_{\beta} \) \(q^{\beta} \) \(\gamma^{\beta} \) $=q^{x}y^{2}-q^{q}x^{3}-q^{q}y^{3}+q^{q}2^{3}+...$

Construction of mirror potential

$$W = qxyz - q^{9}x^{3} - q^{9}y^{3} + q^{9}z^{9} + \cdots$$

= $-\phi(q)(x^{3} + y^{3} - z^{3}) + \psi(q)xyz$.

where

$$\phi = \sum_{k=0}^{\infty} (-1)^{3k+1} (2k+1) q_{\alpha}^{3(12k^2+12k+3)}$$

$$\psi = -q_{\alpha} + \sum_{k=1}^{\infty} (-1)^{3k} \left(-(6k+1) q_{\alpha}^{(6k+1)^2} + (6k-1) q_{\alpha}^{(6k-1)^2} \right).$$

Construction of mirror potential

$$W = qxyz - q^{9}x^{3} - q^{9}y^{3} + q^{9}z^{9} + \cdots$$

= $-\phi(q)(x^{3} + y^{3} - z^{3}) + \psi(q)xyz$.

where

$$\phi = \sum_{k=0}^{\infty} (-1)^{3k+1} (2k+1) q_{\alpha}^{3(12k^2+12k+3)}$$

$$\psi = -q_{\alpha} + \sum_{k=1}^{\infty} (-1)^{3k} \left(-(6k+1) q_{\alpha}^{(6k+1)^2} + (6k-1) q_{\alpha}^{(6k-1)^2} \right).$$

After change of coordinate, we have

$$x^{3} + y^{3} + z^{3} - \frac{\psi}{\phi}xyz$$

General a, b, c case

ullet In general, one can consider $\mathbb{P}^1_{a,b,c}$, where each orbifold point has $\mathbb{Z}_a,\mathbb{Z}_b,\mathbb{Z}_c$ singularity. We have

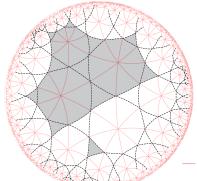
$$W(x, y, z) = x^{a} + y^{b} + z^{c} - \sigma xyz + \cdots$$

General a, b, c case

• In general, one can consider $\mathbb{P}^1_{a,b,c}$, where each orbifold point has $\mathbb{Z}_a, \mathbb{Z}_b, \mathbb{Z}_c$ singularity. We have

$$W(x, y, z) = x^{a} + y^{b} + z^{c} - \sigma xyz + \cdots$$

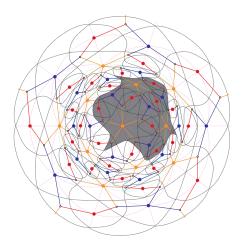
ullet We can count all necessary polygons to compute W explicitly (joint work with Sang-hyun Kim)



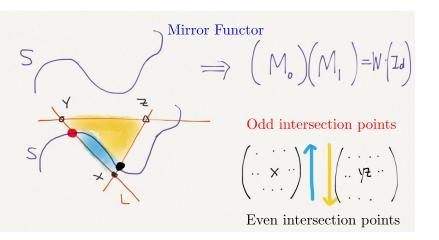
Tessellation from $\mathbb{P}^1_{4,4,4}$

---- Seidel Lagrangian

\bullet The case of (2,3,5)

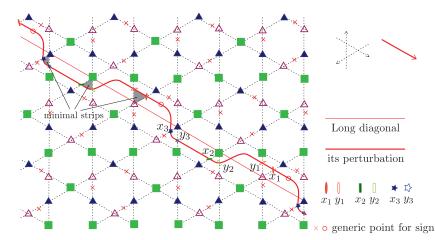


Homological Mirror functor in action



Equator \leftrightarrow (3 \times 3) matrix factorization of W

▶ Equator (straight line passing through 3 orbifold points upstairs) corresponds to (3 × 3) matrix factorization of *W* explained before.



Mirror matrix factorization

$$J = \begin{array}{ccccc} x_1 & x_2 & x_3 \\ y_1 & \beta_1 x^2 + \gamma_1 yz & \beta_3 z^2 + \gamma_3 xy & \beta_2 y^2 + \gamma_2 zx \\ \beta_2 z^2 + \gamma_2 xy & \beta_1 y^2 + \gamma_1 zx & \beta_3 x^2 + \gamma_3 yz \\ \beta_3 y^2 + \gamma_3 zx & \beta_2 x^2 + \gamma_2 yz & \beta_1 z^2 + \gamma_1 xy \end{array}$$

$$E = \begin{array}{cccc} x_1 & x_2 & x_3 \\ x_1 & \alpha_1 x & \alpha_2 z & \alpha_3 y \\ \alpha_3 z & \alpha_1 y & \alpha_2 x \\ x_3 & \alpha_2 y & \alpha_3 x & \alpha_1 z \end{array}$$

This satisfies

$$J \bullet E = E \bullet J = W \cdot Id$$

Matrix factorization of wedge-contraction type

- ▶ Consider $W \in R = \mathbb{C}[x_1, \dots, x_n]$ with isolated singularity at the origin.
- ▶ Consider **odd variables** $\theta_1, \dots, \theta_n$ so that we have

$$\theta_i \cdot \theta_j = -\theta_j \cdot \theta_i, \quad \partial_{\theta_i} \partial_{\theta_j} = -\partial_{\theta_j} \partial_{\theta_i}$$

Matrix factorization of wedge-contraction type

- ▶ Consider $W \in R = \mathbb{C}[x_1, \dots, x_n]$ with isolated singularity at the origin.
- ▶ Consider **odd variables** $\theta_1, \dots, \theta_n$ so that we have

$$\theta_i \cdot \theta_j = -\theta_j \cdot \theta_i, \quad \partial_{\theta_i} \partial_{\theta_j} = -\partial_{\theta_j} \partial_{\theta_i}$$

- ▶ Consider the algebra $R < \theta_1, \dots, \theta_n > \text{ of rank } 2^n$.
- ▶ Define w_i so that $W = x_1w_1 + \cdots + x_nw_n$.

Matrix factorization of wedge-contraction type

- ▶ Consider $W \in R = \mathbb{C}[x_1, \dots, x_n]$ with isolated singularity at the origin.
- ▶ Consider **odd variables** $\theta_1, \dots, \theta_n$ so that we have

$$\theta_i \cdot \theta_j = -\theta_j \cdot \theta_i, \quad \partial_{\theta_i} \partial_{\theta_j} = -\partial_{\theta_j} \partial_{\theta_i}$$

- ▶ Consider the algebra $R < \theta_1, \dots, \theta_n > \text{ of rank } 2^n$.
- ▶ Define w_i so that $W = x_1 w_1 + \cdots + x_n w_n$.
- Define

$$\delta = \sum_{i} x_{i} \theta_{i} + w_{i} \partial_{\theta_{i}}.$$
$$\delta^{2} = W$$

Matrix factorization of wedge-contraction type II

- $(R < \theta_1, \dots, \theta_n >, \delta)$ defines a matrix factorization of W.
- ▶ If n = 3, then $2^3 = 8$, and even and odd parts of $R < \theta_1, \dots, \theta_n >$ is 4 dimensional. Hence provides (4×4) matrix factorization of W.

Matrix factorization of wedge-contraction type II

- ▶ $(R < \theta_1, \dots, \theta_n >, \delta)$ defines a matrix factorization of W.
- ▶ If n = 3, then $2^3 = 8$, and even and odd parts of $R < \theta_1, \dots, \theta_n >$ is 4 dimensional. Hence provides (4×4) matrix factorization of W.
- Dyckerhoff proved that this matrix factorization generates the Matrix factorization category if W has only isolated singularity at the origin.
- ► This matrix factorization corresponds to the skyscraper sheaf at the singular point.

Seidel Lagrangian maps to wedge-contraction matrix factorization

- ▶ To prove homological mirror symmetry, we prove that Seidel Lagrangian L maps to (4×4) matrix factorization.
- ▶ First CF(L, L) has 8 generators.

$$(\mathit{min}, \mathit{max}, X, \bar{X}, Y, \bar{Y}, Z, \bar{Z})$$

Seidel Lagrangian maps to wedge-contraction matrix factorization

- ▶ To prove homological mirror symmetry, we prove that Seidel Lagrangian L maps to (4×4) matrix factorization.
- First CF(L, L) has 8 generators.

$$(min, max, X, \bar{X}, Y, \bar{Y}, Z, \bar{Z})$$

- ▶ We can identify $\theta_1 = X$, $\theta_2 = Y$, $\theta_3 = Z$. But $X \land Y \neq \bar{Z}$. In fact, we need quantum corrections.
- After this quantum corrections, this become wedge-contraction type.

Seidel Lagrangian maps to wedge-contraction matrix factorization

- ► To prove homological mirror symmetry, we prove that Seidel Lagrangian *L* maps to (4 × 4) matrix factorization.
- First CF(L, L) has 8 generators.

$$(min, max, X, \bar{X}, Y, \bar{Y}, Z, \bar{Z})$$

- ▶ We can identify $\theta_1 = X$, $\theta_2 = Y$, $\theta_3 = Z$. But $X \land Y \neq \overline{Z}$. In fact, we need quantum corrections.
- After this quantum corrections, this become wedge-contraction type.
- ▶ We show that $W_{a,b,c}$ has isolated singularities at the origin for $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq 1$. (joint with S.H. Kim) In such case, Seidel Lagrangian also split-generates derived Fukaya category of $\mathbb{P}_{a,b,c}$ (using Abouzaid, AFOOO),
- ▶ This proves the homological mirror symmetry.

Equivariant theory

- ▶ In elliptic curve quotient E/\mathbb{Z}_3 , Lagrangian is given by \mathbb{Z}_3 -equivariant brane in E.
- ▶ Given a character ρ of \mathbb{Z}_3 , we have an orbi-bundle.

Equivariant theory

- ▶ In elliptic curve quotient E/\mathbb{Z}_3 , Lagrangian is given by \mathbb{Z}_3 -equivariant brane in E.
- ▶ Given a character ρ of \mathbb{Z}_3 , we have an orbi-bundle.
- $ightharpoonup \check{G}$ naturally act on x, y, z, and W is invariant under \check{G} -action.
- ▶ We get Landau-Ginzburg orbifold (W, \check{G}) .

Equivariant theory

- ▶ In elliptic curve quotient E/\mathbb{Z}_3 , Lagrangian is given by \mathbb{Z}_3 -equivariant brane in E.
- Given a character ρ of \mathbb{Z}_3 , we have an orbi-bundle.
- $ightharpoonup \check{G}$ naturally act on x, y, z, and W is invariant under \check{G} -action.
- ▶ We get Landau-Ginzburg orbifold (W, \check{G}) .
- We get upstairs functor to equivariant Matrix factorization category.

$$\mathcal{F}uk(E) o \mathcal{MF}_{\check{G}}(W)$$