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1. Introduction

In this paper, we consider the following Dirichlet problem:{
aijDiju = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
n and the matrix A = (aij) of coefficients is

assumed to be symmetric and uniformly elliptic, see (2.1)–(2.2).
We are here concerned with optimal weighted Lp regularity results for solu-

tions to (1.1). More precisely, our goal is to find minimal conditions both on the
coefficients aij and on the boundary ∂Ω of the domain under which we derive the
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following global weighted W 2,p estimate

‖D2u‖Lp
w(Ω) ≤ c‖f‖Lp

w(Ω), ∀ p ∈ (2,∞) (1.2)

with a weight w belonging to the Muckenhoupt class A p
2
, where the constant c > 0

is independent of f and u.
For the unweighted case that w = 1 in (1.2), it is well known that there does

not exist a unique strong solution in W 2,p(Ω) to (1.1) under the basic structural
conditions on the coefficients like (2.1)–(2.2), even if the domain has an appropriate
smoothness condition, as we see from [26, 29, 31]. It also turned out that this
classical Dirichlet problem could not be solvable in an arbitrary bounded domain
in R

n due to the famous examples of Zaremba and Lebesgue in [24, 37]. These facts
naturally lead us to impose both a suitable additional condition on the coefficients
and a certain geometric restriction on the boundary of the domain, in order to
achieve the unique solvability of (1.1) in W 2,p(Ω) for the full range of p ∈ (1,∞).

As the classical results, if the coefficients aij are continuous and the boundary
∂Ω of the domain Ω belongs to C2, then the estimate (1.2) of the problem (1.1) is
valid for every 1 < p < ∞, see [18, 26].

In the case of discontinuous coefficients, Miranda in [27] proved the well-
posedness of (1.1) in W 2,2(Ω) ∩ W 1,2

0 (Ω) when the coefficients aij belong to W 1,n

and ∂Ω is sufficiently regular. This is known for an optimal result among the Lp

spaces for the nonuniqueness of the solutions in the case that aij ∈ W 1,n−ε, ε > 0.
The assumptions W 1,n in [27] were relaxed in [3] to the level that the first deriva-
tives of the coefficients aij are L(n,∞), which is the so-called Marcinkiewicz space.
Since then, there have been further research activities on the W 2,p regularity prob-
lem, and especially, in the papers [11, 12], Chiarenza, Frasca and Longo proved the
interior and boundary W 2,p estimates of solutions to (1.1) when the coefficients aij

belong to VMO and ∂Ω belongs to C1,1. The approach in [11, 12] was mainly based
on the explicit representation formulas involving singular integral operators and
commutators. This approach was later generalized and applied by Palagachev, Di
Fazio, Maugeri and Softova to the quasilinear elliptic problems, see [14, 25, 26, 30].
In [22], Krylov proposed a different approach for the W 2,p solvability of solutions to
the nondivergence type equations with VMO coefficients, which was mainly based
upon the use of pointwise estimates of the sharp function of second-order deriva-
tives of solutions. Many studies on Lp regularity have been done via this approach
as, for instance, in [15, 16, 21, 34]. There is another approach, the so-called max-
imal function free technique, which was introduced by Acerbi and Mingione [1]
and employed later in [36] to obtain the Orlicz regularity for second-order elliptic
equations in nondivergence form with small BMO coefficients. This approach, not
using either representation formulas or maximal functions, is suitable to the cases
that a scaling in time and space is given differently such as p-Laplacian parabolic
equations and systems, see, for instance, [4, 8, 17, 23].

In accordance with such research achievements on the Lp regularity, we focus
on establishing the global weighted W 2,p estimates for the Dirichlet problem (1.1),
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in particular, when coefficients aij have small BMO semi-norms and the domain Ω
is a bounded subset of R

n and its boundary ∂Ω belongs to C1,1. Indeed, our results
in this paper can be considered as a natural extension of those in [12]. To be more
exact, the Lp regularity of (1.1) in [12] is a special case of the weighted Lp regularity
of (1.1) when a weight w = 1. Moreover, it is worth mentioning that the class of
the coefficients which we are treating in this paper, strictly contains VMO and so
W 1,n, which were previously considered, for instance, in the works [5, 12, 22, 27].

Our approach is strongly influenced by [6, 7, 10, 33, 35]. Unlike the approaches
in [1, 12, 22], we use the Hardy–Littlewood maximal function as the basic tool, to
deduce the required power decay estimates for the weighted measure of the upper
level sets for the maximal function of the second derivatives of the solutions. In
particular, an essential part in our approach is to find a local estimate of solutions of
the problem (1.1) by comparison with those of the limiting problems with constant
coefficients of the local average values of the coefficients of (1.1). Furthermore, a
weighted covering lemma and the standard flattening argument contribute largely to
derive the required global weighted W 2,p estimate along with interior and boundary
weighted W 2,p estimates.

This paper is organized as follows. In the next section we present the relevant
notations, definitions and auxiliary lemmas to state the main results. In Sec. 3
we establish the interior weighted W 2,p estimates, and then obtain the weighted
W 2,p estimates near flat boundary in Sec. 4. By means of covering and flattening
arguments, we finally derive the global weighted W 2,p estimate in Sec. 5.

2. Preliminary Tools and Main Result

We start this section with standard notations and definitions, and recall some lem-
mas which are basic tools to obtain the main results. Let Br(x) = {y ∈ R

n :
|x − y| < r} and B+

r (x) = Br(x) ∩ {xn > 0}. For the sake of simplicity, we write
Br = Br(0) and B+

r = B+
r (0). We also denote Tr(x) = Br(x) ∩ {xn = 0} and

Tr = Br ∩ {xn = 0}.
The following definitions are associated with the conditions of the coefficient

matrix A = (aij). We first assume that A = (aij) : R
n → R

n×n is a measurable
and matrix-valued function on R

n with the symmetric condition aij = aji.

Definition 2.1. We say that the coefficient matrix A is uniformly elliptic if there
is a positive constant Λ such that

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for ∀ ξ ∈ R
n and a.e. x ∈ R

n. (2.1)

Definition 2.2. We say that the coefficient matrix A = (aij) is (δ, R)-vanishing if

sup
0<r≤R

sup
x∈Rn

(∫
−

Br(x)

|A(y) − ABr(x)|2 dy

) 1
2

≤ δ, (2.2)

where ABr(x) = 1
|Br(x)|

∫
Br(x)

A(y)dy is the average value of A on the ball Br(x).
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In the above definition, R can be any positive number by scaling the given
equations, whereas δ is invariant under such scaling. A locally integrable function
f is called of bounded mean oscillation on R

n, denoted by f ∈ BMO(Rn) if

‖f‖∗ := sup
B⊂Rn

∫
−

B

|f − fB | dx < ∞,

where the supremum is taken over all balls B in R
n. In the whole paper, we assume

that A = (aij) is in the John–Nirenberg space BMO of functions of bounded mean
oscillation with small BMO semi-norms, which we defined above in (2.2). This is
a more general concept than the VMO condition appeared in other papers such as
[12, 22]. Since the coefficients aij can be extended in R

n preserving the small BMO
condition (see [2]), we can consider the small BMO coefficients aij to be defined in
R

n throughout this paper. Moreover, we notice that the condition (2.2) is equivalent
to the small BMO condition ‖A‖∗ ≤ δ by the John–Nirenberg inequality (see [20]
for details).

Before stating our main result, let us present some properties of the Mucken-
houpt classes As, 1 < s < ∞, which will be treated in this paper. We say that
w is a weight in Muckenhoupt class As, or an As weight, if w is a positive locally
integrable function on R

n such that

[w]s := sup
(∫
−

B

w(x)dx

)(∫
−

B

w(x)
−1

s−1 dx

)s−1

< +∞,

where the supremum is taken over all balls B ⊂ R
n. If w is an As weight, we write

w ∈ As, and [w]s is called the As constant of w. The As class is stable with respect
to translation, dilation and multiplication by a positive scalar. Every As weight
has the doubling property, and the monotonicity As1 ⊂ As2 , 1 < s1 ≤ s2 < ∞. A
typical example of As weights for 1 < s < ∞ is the function wα(x) = |x|α, x ∈ R

n

where −n < α < n(s − 1). We shall identify the weight w with the measure

w(E) =
∫

E

wdx,

for measurable sets E ⊂ R
n.

Related to the As weight w is the weighted Lebesgue space Ls
w(Ω), 1 < s < ∞,

which contains all measurable functions g on Ω such that

‖g‖Ls
w(Ω) :=

(∫
Ω

|g|swdx

)1/s

< +∞.

Given w ∈ As, 1 < s < ∞ and a non-negative integer m, we also define the weighted
Sobolev space Wm,s

w (Ω) as the set of functions g ∈ Ls
w(Ω) with weak derivatives

Dαg ∈ Ls
w(Ω) for |α| ≤ m. The norm of g in Wm,s

w (Ω) is given by

‖g‖W m,s
w (Ω) :=

( ∑
|α|≤m

∫
Ω

|Dαg|swdx

) 1
s

.

The following is an important property of the As weights (see [32] for details).
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Lemma 2.3. Let w be an As weight for some 1 < s < ∞, and let E be a measurable
subset of a ball B ⊂ R

n. Then there exist two constants β, ν > 0 depending only on
n and w such that

[w]−1
s

( |E|
|B|

)s

≤ w(E)
w(B)

≤ β

( |E|
|B|

)ν

.

Unless otherwise stated, we assume that w is an A p
2

weight for 2 < p < ∞
throughout the paper. Let us now state the main theorem in this paper.

Theorem 2.4 (Main Theorem). Given 2 < p < ∞ and a weight w ∈ A p
2
, there

exists a small δ = δ(Λ, p, n, w, ∂Ω) > 0 so that if A is uniformly elliptic and (δ, R)-
vanishing, ∂Ω ∈ C1,1 and |f |2 ∈ L

p
2
w(Ω), then the solution u ∈ W 2,2(Ω) ∩ W 1,2

0 (Ω)
of (1.1) satisfies |D2u|2 ∈ L

p
2
w(Ω) with the estimate∫

Ω

|D2u|pwdx ≤ c

∫
Ω

|f |pwdx,

where a constant c > 0 is independent of u and f .

A strong solution of Eq. (1.1), which is treated throughout the paper, is a
twice weakly differentiable function satisfying Eq. (1.1) almost everywhere in Ω and
assuming boundary values on ∂Ω in classical or in general sense, while a classical
solution of the equation must be at least twice continuously differentiable. Since
L

p
2
w(Ω) ⊂ L1(Ω) for 2 < p < ∞, we remark that there is a unique strong solution

u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) of the problem (1.1) under the given conditions including

|f |2 ∈ L
p
2
w(Ω) according to the results in [12].

One of the main tools in our approach for proving the main theorem is the
Hardy–Littlewood maximal function which controls the local behavior of a function.
For a locally integrable function g defined in R

n, we denote the maximal function
of g by

Mg(x) = sup
r>0

1
|Br(x)|

∫
Br(x)

|g(y)|dy,

at each point x ∈ R
n. We also use

MΩg = M(χΩg)

if g is not defined outside Ω.
We shall use the basic properties of the Hardy–Littlewood maximal function as

follows:

(1) (strong p-p estimate)

‖Mg‖Lp(Rn) ≤ c‖g‖Lp(Rn) for 1 < p ≤ ∞,

where a constant c depends only on n and p.
(2) (weak 1-1 estimate)

|{x ∈ R
n : Mg(x) ≥ t}| ≤ c

t
‖g‖L1(Rn) for ∀ t > 0,
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where a constant c depends only on n.

The following is the so-called Muckenhoupt’s theorem (see [28] for details). Since
Ls

w(Rn) ⊂ L1
loc(R

n) for 1 < s < ∞,Mg is meaningful when g ∈ Ls
w(Rn).

Lemma 2.5. Suppose w ∈ As where 1 < s < ∞. Then there exists a constant
c = c(n, s, [w]s) > 0 such that∫

Rn

(Mg)swdx ≤ c

∫
Rn

|g|swdx (2.3)

whenever g∈Ls
w(Rn). Conversely, if (2.3) holds for every g∈Ls

w(Rn), then w ∈ As.

We also need the following standard measure theory from [9].

Lemma 2.6. Suppose g is a non-negative measurable function in a bounded domain
Ω ⊂ R

n. Let η > 0 and M > 1 be constants and w be a weight in R
n. Then for

0 < s < ∞,

g ∈ Ls
w(Ω) if and only if S :=

∑
k≥1

M skw({x ∈ Ω : g(x) > ηMk}) < ∞

and moreover

c−1S ≤ ‖g‖s
Ls

w(Ω) ≤ c(w(Ω) + S),

where c > 0 is a constant depending only on η, M and s.

We next introduce one of the main tools which will be used repeatedly in the
proofs of the weighted interior and boundary W 2,p estimates.

Lemma 2.7 (Vitali Covering Lemma). Let C be a class of balls Bα in R
n with

their radii bounded above. Then there exist disjoint balls {Bαi}∞i=1 ⊂ {Bα}α such
that ⋃

α

Bα ⊂
⋃
i

5Bαi ,

where 5Bαi denotes the ball with the same center as Bαi but with five times the
radius.

Indeed, we shall employ the following modified versions of Vitali covering lemma.
They can be obtained from the above Vitali covering lemma, see the papers [6, 33]
for their proofs and more details.

Lemma 2.8. Let 0 < ε < 1, and E and F be measurable sets with E ⊂ F ⊂ B1

such that

(1) |E| < ε|B1| and

1550001-6
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(2) for every x ∈ B1 with |E ∩ Br(x)| ≥ ε|Br|, Br(x) ∩ B1 ⊂ F .

Then |E| ≤ 10nε|F |.
Lemma 2.9. Let 0 < ε < 1, and E and F be measurable sets with E ⊂ F ⊂ B+

1

such that

(1) |E| < ε|B+
1 | and

(2) for every x ∈ B+
1 with |E ∩ Br(x)| ≥ ε|Br|, Br(x) ∩ B+

1 ⊂ F .

Then |E| ≤ 2(10n)ε|F |.
The following lemma is the weighted version of the modified Vitali covering

lemma.

Lemma 2.10. Let w be an As weight for some 1 < s < ∞. Let 0 < ε < 1 and
suppose that the measurable sets E and F with E ⊂ F ⊂ B+

1 satisfy the following
properties:

(1) w(E) < εw(B+
1 ), and

(2) for every x ∈ B+
1 and 0 < r ≤ 1,

w(E ∩ Br(x)) ≥ εw(Br(x)) implies Br(x) ∩ B+
1 ⊂ F.

Then w(E) ≤ 20nsε[w]2sw(F ).

Proof. In view of (1), for almost all x ∈ E, there is a small ρx > 0 such that

w(E ∩ Bρx(x)) = εw(Bρx(x)) and

w(E ∩ Bρ(x)) < εw(Bρ(x)), ∀ ρ ∈ (ρx, 1].
(2.4)

Since {Bρx(x)}x∈E covers E with ρx ≤ 1, the Vitali covering lemma, Lemma 2.7,
implies that there is a countable {xi}∞i=1 so that the balls Bρxi

(xi) are mutually
disjoint and E ⊂ ⋃

i B5ρxi
(xi). Then by Lemma 2.3 and (2.4),

w(E ∩ B5ρxi
(xi)) < εw(B5ρxi

(xi)) ≤ ε[w]s5nsw(Bρxi
(xi)).

We notice that

sup
0<ρ≤1

sup
x∈B+

1

|Bρ(x)|
|Bρ(x) ∩ B+

1 | ≤ 4n.

Therefore from Lemma 2.3, we finally obtain

w(E) ≤ w


E ∩

⋃
i≥1

B5ρxi
(xi)


 ≤

∑
i≥1

ε[w]s5nsw(Bρxi
(xi))

≤ [w]2s5
nsε

∑
i≥1

(
|Bρxi

(xi)|
|Bρxi

(xi) ∩ B+
1 |

)s

w(Bρxi
(xi) ∩ B+

1 )

1550001-7
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≤ [w]2s20nsε
∑
i≥1

w(Bρxi
(xi) ∩ B+

1 )

≤ [w]2s20nsεw


⋃

i≥1

Bρxi
(xi) ∩ B+

1


 ≤ 20nsε[w]2sw(F ),

where the last inequality comes from (2.4) and the second hypothesis.

We end this section with the following standard iteration lemma (see [19]).

Lemma 2.11. Let g : [a, b] → R be a bounded non-negative function. Assume that
for any t, s such that 0 < a ≤ t < s ≤ b,

g(t) ≤ ηg(s) +
A

(s − t)α
+ B,

where A, B ≥ 0, α > 0 and 0 ≤ η < 1. Then we have

g(t) ≤ c

(
A

(s − t)α
+ B

)
for some constant c = c(α, η) > 0.

3. Interior Weighted Estimates

In this section, we shall prove the interior weighted W 2,p estimates for the nondi-
vergence type elliptic equation (1.1) via the so-called maximal function approach,
which is different from those previously used, for instance, in [11, 22]. We begin
with the interior unweighted W 2,2 estimates for Eq. (1.1) from [11].

Lemma 3.1. There exists a small δ = δ(Λ, n) > 0 such that if A is uniformly
elliptic and (δ, 6)-vanishing and if f ∈ L2(B6), then for any solution u ∈ W 2,2(B6)
of aijDiju = f in B6, we have the estimate

‖D2u‖L2(B1) ≤ c(‖f‖L2(B6) + ‖u‖L2(B6)),

where a constant c > 0 is independent of u and f .

The following is the main theorem in this section.

Theorem 3.2. Given 2 < p < ∞ and a weight w ∈ A p
2
, there exists a small

δ = δ(Λ, p, n, w) > 0 such that if A is uniformly elliptic and (δ, 6)-vanishing and if
|f |2 ∈ L

p
2
w(B6), then for any solution u ∈ W 2,2(B6) of

aijDiju = f in B6, (3.1)

there holds |D2u|2 ∈ L
p
2
w(B1) and we have the estimate

‖D2u‖Lp
w(B1) ≤ c(‖f‖Lp

w(B6) + ‖u‖L2(B6)), (3.2)

where a constant c > 0 is independent of u and f .
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We need the following approximation lemma.

Lemma 3.3. There is a positive constant N1 = N1(Λ, n) so that for any ε > 0
there exists a small δ = δ(ε, Λ, n) > 0 such that if u ∈ W 2,2(Ω) is a solution of
aijDiju = f in Ω ⊃ B6 with

{x ∈ Ω : M(|D2u|2)(x) ≤ 1} ∩ {x ∈ Ω : M(|f |2)(x) ≤ δ2} ∩ B1 
= ∅ (3.3)

and if A is uniformly elliptic and (δ, 6)-vanishing, then

|{x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B1| < ε|B1|.

Proof. From the condition (3.3), there is a point x0 ∈ B1 such that

1
|Bρ|

∫
Bρ(x0)∩Ω

|D2u|2dx ≤ 1 and
1

|Bρ|
∫

Bρ(x0)∩Ω

|f |2dx ≤ δ2,

for any ρ > 0. Note B4 ⊂ B5(x0) to see that∫
−

B4

|D2u|2dx ≤
(

5
4

)n ∫
−

B5(x0)∩Ω

|D2u|2dx ≤ 2n.

Likewise, we have that ∫
−

B4

|f |2dx ≤ 2nδ2.

We then use the Poincaré inequality to discover that∫
−

B4

|Du − (Du)B4 |2dx ≤ c

∫
−

B4

|D2u|2dx ≤ c

for some positive constant c = c(n).
We next let v ∈ W 2,2(B4) be the solution of{

aijB4
Dijv = 0 in B4,

v = u − (u)B4 − (Du)B4 · x on ∂B4,

to find that for some constant c = c(n),∫
−

B4

|Dv|2dx ≤ c

∫
−

B4

|Du − (Du)B4 |2dx ≤ c.

We then use the local C1,1 estimates to discover

‖D2v‖2
L∞(B3) ≤ c

∫
−

B4

|Dv|2dx ≤ N2
0 ,

for some constant N0 = N0(n, Λ) > 0.
Setting h = u− (u)B4 − (Du)B4 ·x−v, we see that h ∈ W 2,2(B3) is a solution of

aijDijh = f − (aij − aijB4
)Dijv in B3.
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Then applying Lemma 3.1, we proceed as in Corollary 4.4 to discover that∫
−

B2

|D2(u − v)|2dx ≤ cδ2,

where c is a positive constant depending only on n, Λ.
We next write N1 = max{4N2

0 , 2n} and claim

{x ∈ B1 : M(|D2u|2)(x) > N2
1 } ⊂ {x ∈ B1 : MB4(|D2(u − v)|2)(x) > N2

0 }.
(3.4)

Indeed, suppose x1 ∈ {x ∈ B1 : MB4(|D2(u − v)|2)(x) ≤ N2
0 }. Then for ρ ≤ 2,

Bρ(x1) ⊂ B3 and so∫
−

Bρ(x1)

|D2u|2dx ≤ 2
∫
−

Bρ(x1)

(|D2(u − v)|2 + |D2v|2)dx

≤ 2MB4(|D2(u − v)|2)(x1) + 2N2
0

≤ 4N2
0 .

On the other hand, if ρ > 2, x0 ∈ Bρ(x1) ⊂ B2ρ(x0), and so we find that∫
−

Bρ(x1)

|D2u|2dx ≤ 2n

∫
−

B2ρ(x0)

|D2u|2dx ≤ 2n.

Therefore, x1 ∈ {x ∈ B1 : M(|D2u|2)(x) ≤ N2
1 }, and so the claim (3.4) is proved.

From (3.4) and the weak 1-1 estimate, we finally get
1

|B1| |{x ∈ B1 : M(|D2u|2)(x) > N2
1 }|

≤ 1
|B1| |{x ∈ B1 : MB4(|D2(u − v)|2)(x) > N2

0 }|

≤ c

∫
−

B2

|D2(u − v)|2dx ≤ cδ2 < ε

by taking δ satisfying the last inequality above, with c being depending only
on n, Λ.

With the approximation lemma above, we have its weighted version whose proof
is similar to that of Lemma 4.6.

Lemma 3.4. Let w be an As weight in R
n for some 1 < s < ∞, y ∈ Ω and r > 0.

Then there is a constant N1(n, Λ) > 0 so that for any ε > 0, there exists a small
δ = δ(ε, Λ, n, w, s) > 0 such that if u ∈ W 2,2(Ω) is a solution of aijDiju = f in
Ω ⊃ B6r(y) with

{x ∈ Ω : M(|D2u|2)(x) ≤ 1} ∩ {x ∈ Ω : M(|f |2)(x) ≤ δ2} ∩ Br(y) 
= ∅
and if A is uniformly elliptic and (δ, 6r)-vanishing, then we have

w({x ∈ B1 : M(|D2u|2)(x) > N2
1 } ∩ Br(y)) < εw(Br(y)).

By a scaling argument, we now have the following lemma.
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Lemma 3.5. Let w be an As weight in R
n for some 1 < s < ∞. Then there

is a constant N1 = N1(n, Λ) > 0 so that for any ε > 0, there exists a small
δ = δ(ε, Λ, n, w, s) > 0 such that if u ∈ W 2,2(Ω) is a solution of aijDiju = f in
Ω ⊃ B6 with

w({x ∈ B1 : M(|D2u|2)(x) > N2
1 } ∩ Br(y)) ≥ εw(Br(y))

for all y ∈ B1 and for all r ∈ (0, 1
2 ), and if A is uniformly elliptic and (δ, 6)-

vanishing, then we have

Br(y) ∩ B1 ⊂ {x ∈ B1 : M(|D2u|2)(x) > 1} ∪ {x ∈ B1 : M(|f |2)(x) > δ2}.
In view of Lemma 2.8, we derive the following power decay estimate. We refer

to the proof of Lemma 4.8 for its completeness.

Lemma 3.6. Under the same assumptions as in Lemma 3.5, we further assume

w({x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B1) < εw(B1).

Then we have

w({x ∈ B1 : M(|D2u|2)(x) > N2k
1 })

≤ εk
1w({x ∈ B1 : M(|D2u|2)(x) > 1})

+
k∑

i=1

εi
1w({x ∈ B1 : M(|f |2)(x) > δ2N

2(k−i)
1 }),

where ε1 = 10nsε[w]2s.

We are now ready to prove the main theorem of this section. Let us take N1, ε

and the corresponding δ to be the same as in the previous lemma.

Proof of Theorem 3.2. In this proof, we denote c to mean a universal constant
which can be computed in terms of n, Λ, p and w. From the assumptions that
|f |2 ∈ L

p
2
w(B6), w ∈ A p

2
and Hölder inequality, we find

∫
B6

|f |2dx ≤
(∫

B6

|f |pwdx

) 2
p

(w
−2

p−2 (B6))
p−2

p ≤ c‖f‖2
Lp

w(B6), (3.5)

and so |f | ∈ L2(B6). Then by Lemma 3.1, there exists a unique solution u of (3.1)
with the estimate

‖D2u‖L2(B1) ≤ c
(‖f‖L2(B6) + ‖u‖L2(B6)

)
. (3.6)

We consider ũ = δu
(‖f‖L

p
w(B6)+‖u‖L2(B6))

and f̃ = δf
(‖f‖L

p
w(B6)+‖u‖L2(B6))

. Observe

that ũ ∈ W 2,2(B6) is a solution of

aijDij ũ = f̃ in B6
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with ‖f̃‖L2(B6) + ‖ũ‖L2(B6) ≤ c‖f̃‖Lp
w(B6) + ‖ũ‖L2(B6) ≤ cδ. Then it follows

from (3.5), (3.6) and the weak 1-1 estimate that

1
|B1| |{x ∈ B1 : M(|D2ũ|2)(x) > N2

1 }|

≤ c

∫
−

B1

|D2ũ|2dx ≤ c

(∫
−

B6

|f̃ |2dx +
∫
−

B6

|ũ|2dx

)
≤ cδ2.

We then recall Lemma 2.3 to discover that

1
w(B1)

w({x ∈ B1 : M(|D2ũ|2)(x) > N2
1 })

≤ β

( |{x ∈ B1 : M(|D2ũ|2)(x) > N2
1 }|

|B1|
)ν

≤ cβδ2ν < ε,

by taking δ in order to get the last inequality. Thus we are under the hypotheses
of Lemma 3.6. We recall Lemmas 2.5 and 2.6 to observe that

∞∑
k=1

Npk
1 w({x ∈ B1 : M(|f̃ |2)(x) > δ2N2k

1 }) ≤ c

∥∥∥∥∥ f̃

δ

∥∥∥∥∥
p

Lp
w(B6)

≤ c.

Then by Lemma 3.6, we have

∞∑
k=1

Npk
1 w({x ∈ B1 : M(|D2ũ|2)(x) > N2k

1 })

≤
∞∑

k=1

Npk
1

{
εk
1w({x ∈ B1 : M(|D2ũ|2)(x) > 1})

+
k∑

i=1

εi
1w({x ∈ B1 : M(|f̃ |2)(x) > δ2N

2(k−i)
1 })

}

=
∞∑

k=1

Npk
1 εk

1w({x ∈ B1 : M(|D2ũ|2)(x) > 1})

+
∞∑

i=1

(Np
1 ε1)i

( ∞∑
k=i

N
p(k−i)
1 w({x ∈ B1 : M(|f̃ |2)(x) > δ2N

2(k−i)
1 })

)

≤
∞∑

k=1

(Np
1 ε1)k(w(B1) + c).

We now take ε1 so that Np
1 ε1 < 1, and then we conclude from Lemmas 2.5 and 2.6

that ‖D2ũ‖Lp
w(B1) ≤ c∗ for some positive constant c∗ = c∗(Λ, n, p, w). We return

from ũ to u and make a standard procedure for higher integrability for u, to finally
derive the desired estimate (3.2).
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4. Weighted Estimates on the Flat Domain

In this section, we derive a weighted W 2,p estimate on the flat boundary. To this
end, we consider a special case that the domain under consideration is a half ball.
We start with an unweighted W 2,2 estimate near the flat boundary from [12].

Lemma 4.1. There exists a small δ = δ(Λ, n) > 0 so that if A is uniformly elliptic
and (δ, 6)-vanishing and if f ∈ L2(B+

6 ), then for any solution u ∈ W 2,2(B+
6 ) of{

aijDiju = f in B+
6 ,

u = 0 on T6,

we have the estimate

‖D2u‖L2(B+
1 ) ≤ c(‖f‖L2(B+

6 ) + ‖u‖L2(B+
6 )),

where a constant c > 0 is independent of u and f .

We now state the main theorem in this section.

Theorem 4.2. Given 2 < p < ∞ and a weight w ∈ A p
2
, there exists a small

δ = δ(Λ, p, n, w) > 0 so that if A is uniformly elliptic and (δ, 6)-vanishing and
|f |2 ∈ L

p
2
w(B+

6 ), then a solution u ∈ W 2,2(B+
6 ) of{

aijDiju = f in B+
6 ,

u = 0 on T6,
(4.1)

satisfies |D2u|2 ∈ L
p
2
w(B+

1 ) with the estimate

‖D2u‖Lp
w(B+

1 ) ≤ c(‖f‖Lp
w(B+

6 ) + ‖u‖L2(B+
6 )), (4.2)

where a constant c > 0 is independent of u and f .

The following is a key lemma to prove the above main result in this section.

Lemma 4.3. For any ε > 0, there is a small δ = δ(ε, n, Λ) > 0 so that if u ∈
W 2,2(B+

6 ) is a solution of {
aijDiju = f in B+

6 ,

u = 0 on T6,
(4.3)

with ∫
−

B+
4

|D2u|2dx ≤ 1 and
∫
−

B+
4

|f |2 + |A − AB+
4
|2dx ≤ δ2,

then there exists a solution v ∈ W 2,2(B+
4 ) of{

aijB+
4
Dijv = 0 in B+

4 ,

v = 0 on T4,
(4.4)
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with ∫
−

B+
4

|D2v|2dx ≤ 1

such that ∫
B+

4

|u − (Dnu)B+
4
xn − v|2dx ≤ ε2.

Proof. We argue by contradiction. If not, there exist ε0 > 0, {uk}∞k=1, {fk}∞k=1

and {Ak}∞k=1 = {(ak
ij)}∞k=1 such that uk ∈ W 2,2(B+

6 ) is a solution of{
ak

ijDijuk = fk in B+
6 ,

uk = 0 on T6,

with ∫
−

B+
4

|D2uk|2dx ≤ 1 and
∫
−

B+
4

|fk|2 + |Ak − AkB+
4
|2dx ≤ 1

k2
, (4.5)

but ∫
B+

4

|uk − (Dnuk)B+
4
xn − v|2dx > ε20, (4.6)

for any solution v ∈ W 2,2(B+
4 ) of (4.4) satisfying∫

−
B+

4

|D2v|2dx ≤ 1.

We write wk := uk − (Dnuk)B+
4
xn and claim

‖wk‖W 2,2(B+
4 ) ≤ c (4.7)

for some positive constant c = c(n, Λ). To do this, recalling Diuk = 0 on T4 for
1 ≤ i ≤ n − 1, we use Poincaré inequality and (4.5) to find that for some c = c

(n) > 0, ∫
−

B+
4

|Di(wk)|2dx ≤ c

∫
−

B+
4

|Di(uk)|2dx ≤ c

∫
−

B+
4

|D2uk|2dx ≤ c

for 1 ≤ i ≤ n − 1. Moreover, we see that∫
−

B+
4

|Dn(wk)|2dx =
∫
−

B+
4

|Dnuk − (Dnuk)B+
4
|2dx ≤ c

∫
−

B+
4

|D2uk|2dx ≤ c

for some constant c = c(n) > 0. Thus, we have that for some positive constant
c = c(n, Λ), ∫

−
B+

4

|Dwk|2dx ≤ c. (4.8)
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But then, since wk = 0 in T4, it follows from the Poincaré inequality and (4.8) that
for some c = c(n) > 0, ∫

−
B+

4

|wk|2dx ≤ c

∫
−

B+
4

|Dwk|2dx ≤ c. (4.9)

We next recall (4.5) to see that∫
−

B+
4

|D2wk|2dx =
∫
−

B+
4

|D2uk|2dx ≤ 1. (4.10)

Then the claim (4.7) follows from (4.8)–(4.10). Consequently, there exist a sub-
sequence of {wk}∞k=1, which we still denote by {wk}∞k=1, and a function w0 ∈
W 2,2(B+

4 ) such that

wk ⇀ w0 weakly in W 2,2(B+
4 ) and wk → w0 strongly in L2(B+

4 ). (4.11)

In addition, it follows from (4.10) and (4.11) that∫
−

B+
4

|D2w0|2dx ≤ 1. (4.12)

Since {AkB+
4
} is uniformly bounded in L∞(B+

4 ), it also has a subsequence, which
is denoted by {Ak}, such that ‖Ak −A0‖L∞(B+

4 ) → 0 as k → ∞ for some constant
matrix A0 = (a0

ij). Then by (4.5), we have

Ak → A0 in L2(B+
4 ). (4.13)

From (4.5), (4.11) and (4.13), it is easy to check that w0 ∈ W 2,2(B+
4 ) is a solution of{

a0
ijDijw0 = 0 in B+

4 ,

w0 = 0 on T4.

We then recall (4.11) and (4.12) to reach a contradiction to the inequality (4.6).
This completes the proof.

Corollary 4.4. Under the hypotheses and conclusion of Lemma 4.3, we have∫
−

B+
2

|D2(u − v)|2dx ≤ ε2.

Proof. We apply Lemma 4.3 to η and δ(η, n, Λ) replaced by ε and δ(ε, n, Λ) respec-
tively, to find that there is a solution v ∈ W 2,2(B+

4 ) of (4.4) such that∫
−

B+
4

|D2v|2dx ≤ 1 and
∫

B+
4

|u − (Dnu)B+
4
xn − v|2dx ≤ η2,
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provided that ∫
−

B+
4

|f |2 + |A − AB+
4
|2dx ≤ δ2.

Then by C1,1 regularity for (4.4) up to the flat boundary, we discover that

‖D2v‖|2
L∞(B+

3 )
≤ c

∫
−

B+
4

|D2v|2dx ≤ c,

for some positive constant c = c(n, Λ).
We next observe that h = u − (Dnu)B+

4
xn − v ∈ W 2,2(B+

3 ) is a solution of{
aijDijh = f − (aij − aijB+

4
)Dijv in B+

3 ,

h = 0 on T3.

Then according to Lemma 4.1, we compute for some constant c = c(n, Λ) > 0,∫
−

B+
2

|D2(u − v)|2dx ≤ c

(∫
−

B+
3

|f − (aij − aijB+
4
)Dijv|2dx

+
∫
−

B+
3

|u − (Dnu)B+
4
xn − v|2dx

)

≤ c

(∫
−

B+
4

|f |2dx + ‖D2v‖2
L∞(B+

3 )

∫
−

B+
4

|aij − aijB+
4
|2 dx

+
∫

B+
4

|u − (Dnu)B+
4
xn − v|2dx

)

≤ c(δ2 + η2) ≤ ε2,

if we take η and δ satisfying the last inequality. This finishes the proof.

Lemma 4.5. There is a positive constant N1 = N1(n, Λ) so that for any ε > 0,

there exists δ = δ(ε, Λ, n) > 0 such that if u ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) is a solution of{

aijDiju = f in Ω ⊃ B+
6 ,

u = 0 on ∂Ω ⊃ T6,
(4.14)

with

B+
1 ∩ {x ∈ Ω : M(|D2u|2)(x) ≤ 1} ∩ {x ∈ Ω : M(|f |2)(x) ≤ δ2} 
= ∅, (4.15)

and if A is uniformly elliptic and (δ, 6)-vanishing, then there holds∣∣{x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B+

1

∣∣ < ε|B+
1 |.

Proof. From the hypothesis (4.15), there exists a point x0 ∈ B+
1 so that

1
|Bρ|

∫
B+

ρ (x0)∩Ω

|D2u|2dx ≤ 1 and
1

|Bρ|
∫

B+
ρ (x0)∩Ω

|f |2dx ≤ δ2 for all ρ > 0.
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Since B+
4 ⊂ B+

5 (x0), we can get∫
−

B+
4

|D2u|2dx ≤
(

5
4

)n ∫
−

B+
5 (x0)

|D2u|2dx ≤ 2n

and similarly ∫
−

B+
4

|f |2dx ≤ 2nδ2.

Let us apply Corollary 4.4 to Eq. (4.14) with u and f replaced by ( 1

2
n
2

)u and ( 1

2
n
2

)f
respectively, in order to have that for any η > 0, there exist a small δ = δ(η) > 0,
a positive constant N0 = N0(n, Λ) and a solution v ∈ W 2,2(B+

4 ) of{
aijB+

4
Dijv = 0 in B+

4 ,

v = 0 on T4

such that

‖D2v‖2
L∞(B+

3 )
≤ N2

0 and
∫
−

B+
2

|D2(u − v)|2dx ≤ η2,

provided that ∫
−

B+
4

|f |2 + |A − AB+
4
|2dx ≤ δ2.

Then we can now show in almost the same way as we did in the proof of Lemma 3.3
that

{x ∈ B+
1 : M(|D2u|2) > N2

1 } ⊂ {x ∈ B+
1 : MB+

4
(|D2(u − v)|2) > N2

0 }, (4.16)

where N2
1 := max{4N2

0 , 2n}. So we discover that for some c = c(n, Λ) > 0,

1
|B+

1 | |{x ∈ B+
1 : M(|D2u|2) > N2

1 }|

≤ 1
|B+

1 | |{x ∈ B+
1 : MB+

4
(|D2(u − v)|2) > N2

0 }|

≤ c

∫
−

B+
2

|D2(u − v)|2dx ≤ cη2 < ε,

if we take η and δ satisfying the last inequality above.

Lemma 4.6. Let w be an As weight in R
n for some 1 < s < ∞. There is a positive

constant N1 = N1(Λ, n) so that for any ε > 0 and for every 0 < r ≤ 1, there exists
a small δ = δ(ε, Λ, n, w, s) > 0 such that if u ∈ W 2,2(Ω) ∩ W 1,2

0 (Ω) is a solution of{
aijDiju = f in Ω ⊃ B+

6r,

u = 0 on ∂Ω ⊃ T6r,
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with

B+
r ∩ {x ∈ Ω : M(|D2u|2)(x) ≤ 1} ∩ {x ∈ Ω : M(|f |2)(x) ≤ δ2} 
= ∅, (4.17)

and if A is uniformly elliptic and (δ, 6r)-vanishing, then

w({x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B+

r ) < εw(B+
r ).

Proof. Let us first define ãij(x) = aij(rx), ũ(x) = 1
r2 u(rx), f̃ (x) = f(rx) and Ω̃ =

{ 1
r x : x ∈ Ω}. Then we note that ũ ∈ W 2,2(Ω̃) ∩ W 1,2

0 (Ω̃) is the solution of{
ãijDij ũ = f̃ in Ω̃ ⊃ B+

6 ,

ũ = 0 on ∂Ω̃ ⊃ T6.

Let ε > 0 be given and choose δ = δ(ε, Λ, n, w, s) as in Lemma 4.5 with ε replaced
by ( ε

2β )
1
ν , where β and ν are the constants in Lemma 2.3. From (4.17), there exists

x0 ∈ B+
r ∩ {x ∈ Ω : M(|D2u|2)(x) ≤ 1} ∩ {x ∈ Ω : M(|f |2)(x) ≤ δ2}. Then

z0 := 1
r x0 ∈ B+

1 ∩ {z ∈ Ω̃ : M(|D2ũ|2)(z) ≤ 1} ∩ {z ∈ Ω̃ : M(|f̃ |2)(z) ≤ δ2}. Since
all the hypotheses of Lemma 4.5 are satisfied, Lemma 4.5 gives

|{z ∈ Ω̃ : M(|D2ũ|2)(z) > N2
1 } ∩ B+

1 | <

(
ε

2β

) 1
ν

|B+
1 |.

Then

|{x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B+

r | <

(
ε

2β

) 1
ν

|B+
r |. (4.18)

Using Lemma 2.3, we finally get from (4.18) that

w
({x ∈ Ω : M(|D2u|2)(x) > N2

1 } ∩ B+
r

)
≤ β

( |{x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B+

r |
|B+

r |
)ν

w(B+
r )

≤ ε

2
w(B+

r ) < εw(B+
r ).

Lemma 4.7. Let w be an As weight in R
n for some 1 < s < ∞. Then there is

a constant N1 = N1(Λ, n, w) > 0 so that for any ε > 0, 0 < r ≤ 1
18 and y ∈ B+

1 ,

there exists a small δ = δ(ε, n, Λ, w) > 0 such that if u ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) is a

solution of {
aijDiju = f in Ω ⊃ B+

6 ,

u = 0 on ∂Ω ⊃ T6,

with

w({x ∈ B+
1 : M(|D2u|2)(x) > N2

1 } ∩ Br(y)) ≥ εw(Br(y)) (4.19)
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and if A is uniformly elliptic and (δ, 6)-vanishing, then

Br(y) ∩ B+
1 ⊂ {x ∈ B+

1 : M(|D2u|2)(x) > 1} ∪ {x ∈ B+
1 : M(|f |2)(x) > δ2}.

(4.20)

Proof. We prove it by contradiction. To do this, assume that (4.19) holds and the
conclusion (4.20) is false. Then there is a point x0 = (x0

′, x0n) ∈ Br(y) ∩ B+
1 such

that
1

|Bρ|
∫

B+
ρ (x0)∩Ω

|D2u|2dx ≤ 1 and
1

|Bρ|
∫

B+
ρ (x0)∩Ω

|f |2dx ≤ δ2,

for any ρ > 0. If B6r(x0) ⊂ B+
6 , it can be done from Lemma 3.5. Thus we need

only to consider the case B6r(x0) 
⊂ B+
6 , which implies B6r(x0) ∩ T6 
= ∅. One can

easily check that (x0
′, 0) ∈ T1 and moreover

Br(y) ∩ B+
1 ⊂ B+

6r(x0) ⊂ B+
12r(x0

′, 0) ⊂ B+
72r(x0

′, 0) ⊂ B+
6 ⊂ Ω,

for 0 < r ≤ 1
18 . Apply Lemma 4.6 to B+

12r(x0
′, 0) with ε replaced by 2νε

β[w]s(
3
5 )nν20ns ,

to derive that
1

w(Br(y))
w({x ∈ B+

1 : M(|D2u|2)(x) > N2
1 } ∩ Br(y))

≤ 1
w(Br(y))

w({x ∈ B+
12r(x0

′, 0) : M(|D2u|2)(x) > N2
1 })

<
2νεw(B+

12r(x0
′, 0))

β[w]s(3
5 )nν20nsw(Br(y))

.

However, Lemma 2.3 implies

w(B+
12r(x0

′, 0)) ≤ β

( |B+
12r|

|B20r|
)ν

w(B20r(y))

≤ β2−ν

(
3
5

)nν

[w]s

( |B20r(y)|
|Br(y)|

)s

w(Br(y))

= β2−ν

(
3
5

)nν

[w]s20nsw(Br(y)),

since B+
12r(x0

′, 0) ⊂ B20r(y). Hence we eventually obtain

1
w(Br(y))

w({x ∈ B+
1 : M(|D2u|2)(x) > N2

1 } ∩ Br(y)) < ε,

which is a contradiction.

Lemma 4.8. Let w be an As weight in R
n for some 1 < s < ∞ and let N1 be

given by Lemma 4.7. For any ε > 0, there exists δ = δ(ε, Λ, n, w, s) > 0 such that if
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u ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) is a solution of{

aijDiju = f in Ω ⊃ B+
6 ,

u = 0 on ∂Ω ⊃ T6,

with

w({x ∈ Ω : M(|D2u|2)(x) > N2
1 } ∩ B+

1 ) < εw(B+
1 ) (4.21)

and if A is uniformly elliptic and (δ, 6)-vanishing, then

w({x ∈ B+
1 : M(|D2u|2)(x) > N2k

1 })

≤ εk
1w({x ∈ B+

1 : M(|D2u|2)(x) > 1})

+
k∑

i=1

εi
1w({x ∈ B+

1 : M(|f |2)(x) > δ2N
2(k−i)
1 }),

where ε1 := 20nsε[w]2s.

Proof. We use Lemma 2.10 on

E := {x ∈ B+
1 : M(|D2u|2)(x) > N2

1 } and

F := {x ∈ B+
1 : M(|D2u|2)(x) > 1} ∪ {x ∈ B+

1 : M(|f |2)(x) > δ2}.
From (4.21) and Lemma 4.7, we easily check that E and F satisfy the hypotheses
of Lemma 2.10. Then Lemma 2.10 gives w(E) ≤ ε1w(F ) with ε1 := 20nsε[w]2s,
that is,

w({x ∈ B+
1 : M(|D2u|2)(x) > N2

1 })
≤ ε1w({x ∈ B+

1 : M(|D2u|2)(x) > 1})
+ ε1w({x ∈ B+

1 : M(|f |2)(x) > δ2}).
For any k ≥ 2, we know

Ek := {x ∈ B+
1 : M(|D2u|2)(x) > Nk

1 } ⊂ E,

and so w(Ek) < εw(B+
1 ). Therefore for each λ := Nk−1

1 , uλ := u
λ ∈ W 2,2(Ω) ∩

W 1,2
0 (Ω) is a solution of {

aijDijuλ = fλ in Ω ⊃ B+
6 ,

uλ = 0 on ∂Ω ⊃ T6,

with w(Eλ
k ) < εw(B+

1 ), and so

w({x ∈ B+
1 : M(|D2uλ|2)(x) > N2

1 })
≤ ε1w({x ∈ B+

1 : M(|D2uλ|2)(x) > 1})
+ ε1w({x ∈ B+

1 : M(|fλ|2)(x) > δ2}),
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where fλ := f
λ and Eλ

k := {x ∈ B+
1 : M(|D2uλ|2)(x) > Nk

1 }. Hence we find

w({x ∈ B+
1 : M(|D2u|2)(x) > N2

1 λ2})

≤ ε1w({x ∈ B+
1 : M(|D2u|2)(x) > λ2})

+ ε1w({x ∈ B+
1 : M(|f |2)(x) > δ2λ2}).

Iterating the foregoing estimate, we finally derive

w({x ∈ B+
1 : M(|D2u|2)(x) > N2k

1 })
≤ εk

1w({x ∈ B+
1 : M(|D2u|2)(x) > 1})

+
k∑

i=1

εi
1w({x ∈ B+

1 : M(|f |2)(x) > δ2N
2(k−i)
1 }),

for any positive integer k.

Now we are ready to give a proof of Theorem 4.2. Let us take N1, ε and the
corresponding δ given by the previous lemma. Hereafter we employ c to denote any
constant that can be computed in terms of n, Λ, p and w.

Proof of Theorem 4.2. Since |f |2 ∈ L
p
2
w(Ω), we have∫

Ω

|f |2dx ≤
(∫

Ω

|f |pwdx

) 2
p

(w
−2

p−2 (Ω))
p−2

p (4.22)

by Hölder inequality and so |f | ∈ L2(Ω). Then Lemma 4.1 gives that there is a
unique solution u ∈ W 2,2(B+

6 ) of (4.1) with the estimate

‖D2u‖L2(B+
1 ) ≤ c(‖f‖L2(B+

6 ) + ‖u‖L2(B+
6 )), (4.23)

with the constant c independent of u and f .
We write ũ = δu

(‖f‖
L

p
w(B+

6 )
+‖u‖

L2(B+
6 )

) and f̃ = δf
(‖f‖

L
p
w(B+

6 )
+‖u‖

L2(B+
6 )

) . Then we

see that

‖f̃‖L2(B+
6 ) + ‖ũ‖L2(B+

6 ) ≤ cδ,

and ũ ∈ W 2,2(B+
6 ) is a solution of{

aijDij ũ = f̃ in B+
6 ,

ũ = 0 on T6.

Then by (4.22), (4.23) and the weak 1-1 estimate, we deduce

1
|B+

1 | |{x ∈ B+
1 : M(|D2ũ|2)(x) > N2

1 }|

≤ c

∫
−

B+
1

|D2ũ|2dx ≤ c

(∫
−

B+
6

|f̃ |2dx +
∫
−

B+
6

|ũ|2dx

)
≤ cδ2 ≤

(
ε

2β

) 1
ν

,
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by taking δ in order to get the last inequality, and hence Lemma 2.3 yields

w
({x ∈ B+

1 : M(|D2ũ|2)(x) > N2
1 }
)

< β

( |{x ∈ B+
1 : M(|D2ũ|2)(x) > N2

1 }|
|B+

1 |
)ν

w(B+
1 )

≤ ε

2
w(B+

1 ) < εw(B+
1 ).

Observe |f̃ |2 ∈ L
p
2
w(B+

6 ) with ‖f̃‖Lp
w(B+

6 ) ≤ δ and recall Lemmas 2.5 and 2.6, to

discover that ‖M(|f̃ |2)‖
p
2

L
p
2
w (B+

6 )
≤ cδp, and so

∞∑
k=1

Npk
1 w({x ∈ B+

1 : M(|f̃ |2)(x) > δ2N2k
1 })

≤
∞∑

k=1

Npk
1 w




x ∈ B+

1 : M

∣∣∣∣∣ f̃δ

∣∣∣∣∣
2

 (x) > N2k

1






≤ c

∥∥∥∥∥∥M

∣∣∣∣∣ f̃δ

∣∣∣∣∣
2


∥∥∥∥∥∥

p
2

L
p
2
w (B+

6 )

≤ c

∥∥∥∥∥ f̃

δ

∥∥∥∥∥
p

Lp
w(B+

6 )

≤ c.

Therefore it follows from Lemma 4.8 that for some c = c(n, Λ, w, p) > 0,

∞∑
k=1

Npk
1 w({x ∈ B+

1 : M(|D2ũ|2)(x) > N2k
1 })

≤
∞∑

k=1

Npk
1

{
εk
1w({x ∈ B+

1 : M(|D2ũ|2)(x) > 1})

+
k∑

i=1

εi
1w({x ∈ B+

1 : M(|f̃ |2)(x) > δ2N
2(k−i)
1 })

}

=
∞∑

k=1

Npk
1 εk

1w({x ∈ B+
1 : M(|D2ũ|2)(x) > 1})

+
∞∑

i=1

(Np
1 ε1)i

( ∞∑
k=i

N
p(k−i)
1 w({x ∈ B+

1 : M(|f̃ |2)(x) > δ2N
2(k−i)
1 })

)

≤
∞∑

k=1

Npk
1 εk

1(w(B+
1 ) + c) ≤ c,

by taking ε1 so that Np
1 ε1 < 1. Then we employ once again Lemmas 2.5 and 2.6 to

find ‖D2ũ‖Lp
w(B+

1 ) ≤ c, which in turn implies the desired estimate (4.2).

1550001-22

In
t. 

J.
 M

at
h.

 2
01

5.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
E

O
U

L
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

07
/2

2/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

February 12, 2015 10:10 WSPC/S0129-167X 133-IJM 1550001

Global weighted W 2,p estimates

5. The Proof of Main Theorem

In this section we shall prove our main result, Theorem 2.4, via standard covering
and flattening arguments. To be brief, we first derive the a priori weighted W 2,p

estimate from the interior and boundary estimates which we have obtained in the
previous sections. We then remove the a priori assumption by an approximation
procedure, to complete our proof. Once again we denote by c to mean a universal
constant being dependent only on n, Λ, w, p and ∂Ω.

Proof of Theorem 2.4. We start with the a priori assumption that

u ∈ W 2,p
w (Ω). (5.1)

Fix any point x0 ∈ ∂Ω. Since ∂Ω ∈ C1,1, we assume that

Ω ∩ Br(x0) = {x ∈ Ω : xn > γ(x′)} ∩ Br(x0)

for some small r > 0 and for some C1,1 function γ : R
n−1 → R satisfying ∂γ

∂xi
(x′

0) =
0 for any i = 1, 2, . . . , n − 1 and ‖�2γ‖L∞(Rn−1) < ∞. We now use change of
variables to flatten out the boundary near x0. To do this, define{

yi = xi =: Φi(x), if i = 1, 2, . . . , n − 1,

yn = xn − γ(x′) =: Φn(x),

and write y = Φ(x). We set Φ := Ψ−1 and write x = Ψ(y). Choose s > 0 so small
that the half ball B+

12s ⊂ Φ(Ω∩Br(x0)). Define ũ(y) = u(Ψ(y)) = u(x) for y ∈ B+
6s

and w̃(y) = w(Ψ(y)) for y ∈ R
n. Then it can be readily checked that w̃ ∈ A p

2
and

ũ ∈ W 2,2(B+
6s) is a solution of{

ãlmDylymũ = f̃ in B+
6s,

ũ = 0 on T6s,

where

ãlm(y) = aij(Ψ(y))Φl
xi

(Ψ(y))Φm
xj

(Ψ(y)), and

f̃(y) = f(Ψ(y)) − aij(Ψ(y))Φl
xixj

(Ψ(y))Dyl
ũ.

We now recall the imposed conditions on A and ∂Ω and the a priori assump-
tion (5.1), to observe that f̃ ∈ Lp

w̃(B+
6s). We also check that the resulting matrix

Ã(y) = (ãlm(y)) = [�Φ(Ψ(y))] ·A(Ψ(y)) · [�Φ(Ψ(y))]t

satisfies a small BMO assumption. Indeed, note from the conditions on A and ∂Ω
that

‖Ã‖∗ ≤ c(‖A‖∗ + ‖�γ‖L∞(B′
r(x′

0))
+ ‖�γ‖2

L∞(B′
r(x′

0))
) ≤ c(δ + r + r2),

where B′
ρ(x

′) := {y′ ∈ R
n−1 : |y′ − x′| < ρ} is a ball in R

n−1. Then we choose
δ = δ(n, Λ, γ) > 0 and r = r(n, Λ, γ) > 0 sufficiently small so that all the hypotheses
of Theorem 4.2 with ũ(sy)

s2 , Ã(sy), f̃(sy) and w̃(sy) for y ∈ B+
6 are satisfied. In turn,
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we apply Theorem 4.2, and then rescale back, to discover that |D2ũ|2 ∈ L
p
2
w̃(B+

s )
with the estimate

∫
B+

s

|D2ũ|pw̃dy ≤ c



∫

B+
6s

|f̃ |pw̃dy︸ ︷︷ ︸
I1

+
1

s2p

[∫
B+

6s

|ũ|2dy

] p
2

︸ ︷︷ ︸
I2


 .

We recall ∂Ω ∈ C1,1 and ũ ∈ W 2,p
w (Ω), to derive

I1 ≤
∫

B+
6s

|f(Ψ)|pw̃dy + c

∫
B+

6s

|Dũ|pw̃dy

≤
∫

B+
6s

|f(Ψ)|pw̃dy + cτsp

∫
B+

6s

|D2ũ|pw̃dy + c(τ, p)
1
sp

∫
B+

6s

|ũ|pw̃dy,

where we have used the weighted Sobolev interpolation inequality for any small
τ > 0, see [13]. On the other hand, we recall w̃ ∈ A p

2
and use Hölder’s inequality

to find

I2 ≤ 1
s2p

(∫
B+

6s

|ũ|pw̃dy

)(∫
B+

6s

w̃
−2

p−2 dy

) p−2
2

≤ [w̃] p
2

|B+
6s|

p
2

w̃(B+
6s)s2p

(∫
B+

6s

|ũ|pw̃dy

)

≤ [w̃]2p
2

|B6| p
2

w̃(B6)s2p

(∫
B+

6s

|ũ|pw̃dy

)

≤ c

s2p

∫
B+

6s

|ũ|pw̃dy

from a direct computation using Lemma 2.3 that

w̃(B+
6s)

w̃(B6)
≥ [w̃]−1

p
2

( |B+
6s|

|B6|
) p

2

.

Consequently, we discover∫
B+

s

|D2ũ|pw̃dy ≤ cτsp

∫
B+

6s

|D2ũ|pw̃dy

+ c

(
c(τ, p)

sp
+

1
s2p

)∫
B+

6s

|ũ|pw̃dy + c

∫
B+

6s

|f(Ψ)|pw̃dy

≤ cτsp

∫
B+

6s

|D2ũ|pw̃dy +
c

s2p

∫
B+

6s

|ũ|pw̃dy + c

∫
B+

6s

|f(Ψ)|pw̃dy.

Take τ > 0 sufficiently small and apply Lemma 2.11 to deduce that for any θ ∈
(0, 1), ∫

B+
θR

|D2ũ|pw̃dy ≤ c

(∫
B+

R

|f̃ |pw̃dy +
1

[(1 − θ)R]2p

∫
B+

R

|ũ|pw̃dy

)
,
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by letting R := 6s. Therefore it follows that∫
B+

s

|D2ũ|pw̃dy ≤ c

(∫
B+

6s

|f(Ψ)|pw̃dy +
1

s2p

∫
B+

6s

|ũ|pw̃dy

)
.

Converting back to the x-variables, we conclude∫
Vs

|D2u|pwdx ≤ c

(∫
Ψ(B+

6s)

|f |pwdx +
1

s2p

∫
Ψ(B+

6s)

|u|pwdx

)

≤ c

s2p

(∫
Ω

|f |pwdx +
∫

Ω

|u|pwdx

)
,

where Vs := Ψ(B+
s ). Since ∂Ω is compact, we can cover ∂Ω by a finite number of

sets Vs1 , Vs2 , . . . , VsN as above and find a finite number of small positive constants
s1, s2, . . . , sN . We therefore have, by summing the resulting estimates, along with
the interior estimate over some open set Vs0 � Ω so that Ω ⊂ ⋃N

i=0 Vsi , that

|D2u|2 ∈ L
p
2
w(Ω)

with the estimate∫
Ω

|D2u|pwdx ≤ c

(∫
Ω

|f |pwdx +
∫

Ω

|u|pwdx

)
.

In addition, using the uniqueness of W 2,p solutions, we eventually obtain the desired
estimate ∫

Ω

|D2u|pwdx ≤ c

∫
Ω

|f |pwdx. (5.2)

Now it remains to remove the a priori assumption (5.1). To this end, select a
sequence {ak

ij}∞k=1 of smooth functions with uniform (δ, R)-vanishing property such
that

ak
ij → aij in Lt(Ω) for each 1 < t < ∞. (5.3)

We also take a sequence {fk}∞k=1 of smooth functions in C∞
0 (Ω) satisfying

fk → f in Lp
w(Ω) and ‖fk‖Lp

w(Ω) ≤ c‖f‖Lp
w(Ω). (5.4)

Then there exists a unique solution uk ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) of{

ak
ijDiju

k = fk in Ω,

uk = 0 on ∂Ω.
(5.5)

Needless to say, these solutions uk are in W 2,p
w (Ω). But then from the estimate (5.2),

we have

‖D2uk‖Lp
w(Ω) ≤ c‖fk‖Lp

w(Ω), (5.6)

where c is independent of k. Thus it follows from (5.4) and (5.6) that

‖D2uk‖Lp
w(Ω) ≤ c‖f‖Lp

w(Ω). (5.7)
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On the other hand, we recall the interpolation inequality in [13], and then use the
weighted Poincaré inequality, to discover∫

Ω

|Duk|pwdx ≤ τ

∫
Ω

|uk|pwdx + c(τ)
∫

Ω

|D2uk|pwdx

≤ cτ

∫
Ω

|Duk|pwdx + c(τ)
∫

Ω

|D2uk|pwdx.

We then select small τ > 0 to derive

‖Duk‖Lp
w(Ω) ≤ c‖D2uk‖Lp

w(Ω) ≤ c‖f‖Lp
w(Ω).

This estimate and the weighted Poincaré inequality imply

‖uk‖Lp
w(Ω) ≤ c‖Duk‖Lp

w(Ω) ≤ c‖D2uk‖Lp
w(Ω) ≤ c‖f‖Lp

w(Ω),

and thus {uk}∞k=1 is uniformly bounded in W 2,p
w (Ω). Then there exist a subsequence,

which we still denote by {uk}∞k=1, and a function v ∈ W 2,p
w (Ω) such that

uk ⇀ v weakly in W 2,p
w (Ω). (5.8)

Consequently, it follows from (5.7) that

‖D2v‖Lp
w(Ω) ≤ lim inf

k→∞
‖D2uk‖Lp

w(Ω) ≤ c‖f‖Lp
w(Ω). (5.9)

In view of (5.3)–(5.5) and (5.8), we easily observe that v is also a solution of (1.1).
Then by the uniqueness for the problem (1.1) we conclude u = v. Hence the proof
is completed by (5.9).
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