# [2019-2학기] Honor Calculus Practice 2 section #007~#008(English) Syllabus

Syllabus

• Course: Honor Calculus Practice 2
• Course Number: L0442.000800 007, 008
• Allowed Audiences: Students taking Honor Calculus 2 (in English)
• Prerequisites: English + Calculus 1
• Textbook: Hongjong Kim, Calculus 2 (English translation), SNU Press
In this course, the lecture will cover advanced topics including appendices of the textbook.
Supplementary reference: Marsden and Tromba, Vector Calculus(6th ed.), W. H. Freeman, 2011
• The role of instructors and TAs
Classes for Honor Calculus Practice 2 are conducted by the teaching assistants under the supervision of the instructors in charge. The role of each is divided as follows:
• Instructors:
They supervise the class. They have rights to approve an absence. They can have meeting with audiences about things that TAs or tutors of building 26 cannot resolve or other things.
• Teaching assistants:
They conduct the actual class. They are in charge of the student presentation, including the order of the presentation and the assignment of exercises. They make comments on the student presentation and evaluate it; identify the degree of student participation; and determine the presentation & participation scores based on the criteria. In addition to this, they give problem-solving class; administer and grade quizzes; and give attendance scores.
• TA-led class
Every class of Honor Calculus Practice 2 is a student-led class, in which the student presentation has a high proportion.
• o In student-led classes, the student presentation is the main part. Each student will give a presentation about four times a semester on the subject of his or her assigned exercise. The goal of this course is to develop communication skills through these presentations.
• Quizzes (100 points) + Presentations & Participation (150 points) + Attendance (50 points) = Total (300 points)
• The attendance score will be graded by the following chart:  # of absences Attendance score 0 times 1 time 2 times 3 times 4 times More than 4 times 50 points 48 points 45 points 35 points 20 points 0 points
※ In calculating the attendance score, 2 tardiness will be considered 1 absence.
• Caution
• English is the only language allowed in the class!!
• “F” grade for missing all of quizzes.
• “F” grade for missing all of homeworks.
• “F” grade for absence from the class more than 4 times.
• Presentations & Participation
• The presentation score is determined by reflecting the presentation attitude, presentation content, and preparation.
• The list of the representative exercises
• Participation scores are determined by reflecting the degree of participation in the class.
• Quizzes
• There are four quizzes, each of which weighs 25 points.
• Schedule
# Date Coverage Points
1 9/27(Fri) Ch. 10 25
2 10/4(Fri) Ch. 11 25
3 11/8(Fri) Ch. 14 ~ Sec. 15.1 25
4 11/29(Fri) Sec. 15.2 ~ Ch. 16 25
• Tentative syllabus: The practice courses cover what the theory course(Honor Calculus 2 #004) covers based on the following schedule of the theory course.
!!Attention: Please note the make-up class schedules in 3rd and 4th weeks!!
Week Sections Note
1st(9/2-9/6) (No theory class on 9/2(Mon) and 9/4(Wed)) 9/2(Mon) Beginning of the fall semester
No class on 9/6(Fri)
2nd(9/9-9/13) 10.1 Graph and level surface
10.2 Continuous function
10.3 Directional derivative
10.4 Differentiable function
10.5 Chain rule
10.6 Gradient vector and level surface
10.7.1 Continuously differentiable functions and Differentiability
9/12(Thu) ~ 14(Sat) Chuseok holidays
3rd(9/16-9/20) 10.7.2 Open sets, Closed sets, Bounded sets
11.1 Leibniz’s rule
11.7.1 Proof of Leibniz's rule
11.2 Second order derivative
11.3 Taylor expansion and approximation
11.4 Critical point theorem
11.5 Hessian, second derivative test
9/21(Sat) 13:00~14:50 Make-up class(Place: 24-101)
4th(9/23-9/27) (No theory class on 9/23(Mon) and 9/25(Wed)) 9/27(Fri) 1st quarter of the fall semester
9/28(Sat) 13:00~14:50 Make-up class(Place: 24-101)
5th(9/30-10/4) 11.6 Lagrange multipliers
11.7.2 Calculus of variations
12.1 Jacobian matrix
12.2 Inverse function theorem, Implicit function theorem
6th(10/7-10/11) 13.1 Vector field
13.2 Line integral
7th(10/14-10/18) 13.3 Potential function
13.5.1 Proof of Poincaré’s lemma
13.4 Differential form
13.5.3 Dynamical systems
8th(10/21-10/25) 14.1 Area and volume
14.2 Multiple integral
14.3 Fubini’s theorem
14.5.1 Proof of Fubini’s theorem
10/25(Mon) Last day to withdraw from courses, 2nd quarter of the fall semester
9th(10/28-11/1) 14.4 Change of variables
15.1 Vector field and divergence
15.6 Divergence and Change of volume
10th(11/4-11/8) 15.2 Divergence theorem
15.3 Plane vector field and rotation
15.4 Boundary and orientation
15.5 Green’s theorem
11th(11/11-11/15) 16.1 Surface
16.2 Surface area
12th(11/18-11/22) 16.3 Surface integral
16.4 Vector field and surface integral
11/20(Wed) 3rd quarter of the fall semester
13th(11/25-11/29) 17.1 Divergence theorem
17.2 Gauss’ law
14th(12/2-12/6) 18.1 Curl
18.2 Stokes’ theorem
15th(12/9-12/13) 12/14(Fri) End of the fall semester
• The above schedule is tentative and may change depending on the progress of the course.

Instructor Information
Section No. Instructor E-mail Address Office Phone No.
[880-]
008 Kim, Woo Chan freecell (at) snu.ac.kr 26-204 2663
TAs Information
Section No. TA E-mail Address Office Phone No.
[880-]
Recitation Time Recitation Room
008 Byeon, Junhyeok giugi2486 (at) snu.ac.kr 27-334 6556 Fri(13:00~14:50) 024-101

List of Articles
번호 제목 글쓴이
공지 2019학년도 과목별 강좌 안내
61 [2019-겨울학기] 수학연습 2 002강좌 강의계획서
60 [2019-겨울학기] 수학연습 2 001강좌 강의계획서
59 [2019-겨울학기] 수학 2 002강좌 강의계획서
58 [2019-겨울학기] 수학 2 001강좌 강의계획서
57 [2019-겨울학기] 수학연습 1 002강좌 강의계획서
56 [2019-겨울학기] 수학연습 1 001강좌 강의계획서
55 [2019-겨울학기] 수학 1 강의계획서
54 [2019-2학기] 공학수학 2 강의계획서
53 [2019-2학기] 공학수학 1 강의계획서
52 [2019-2학기] 인문사회계를 위한 수학 1 002~003강좌 강의계획서
51 [2019-2학기] 인문사회계를 위한 수학 1 001강좌 강의계획서
50 [2019-2학기] 생명과학을 위한 수학 1 001강좌 강의계획서
49 [2019-2학기] 생명과학을 위한 수학 1 002강좌 강의계획서
48 [2019-2학기] 수학연습 1 강의계획서
47 [2019-2학기] 수학 1 강의계획서
46 [2019-2학기] 인문사회계를 위한 수학 2 강의계획서
45 [2019-2학기] 경영학을 위한 수학 001강좌 강의계획서
44 [2019-2학기] 생명과학을 위한 수학 2 강의계획서
43 [2019-2학기] Calculus for Business section(경영학을 위한 수학) #003(English) Syllabus
42 [2019-2학기] Elementary Calculus(미적분학의 첫걸음) Syllabus
41 [2019-2학기] 미적분학연습 2 강의계획서
40 [2019-2학기] 미적분학 2 강의계획서
39 [2019-2학기] 기초수학 2(Basic Calculus 2) 강의계획서
» [2019-2학기] Honor Calculus Practice 2 section #007~#008(English) Syllabus
37 [2019-2학기] Honor Calculus 2 section #004(English) Syllabus
36 [2019-2학기] 고급수학연습 2 001~006강좌 강의계획서
35 [2019-2학기] 고급수학 2 001~003강좌 강의계획서
34 [2019-2학기] Calculus Practice 2 section #052~#053(English) Syllabus
33 [2019-2학기] Calculus 2 section #028(English) Syllabus
32 [2019-2학기] 수학연습 2(국어강좌) 강의계획서
31 [2019-2학기] 수학 2(국어강좌) 강의계획서
30 [2019-여름학기] 공학수학 2 강의계획서
29 [2019-여름학기] 공학수학 1 강의계획서
28 [2019-여름학기] 생명과학을 위한 수학 1 002강좌 강의계획서
27 [2019-여름학기] 생명과학을 위한 수학 1 001강좌 강의계획서
26 [2019-여름학기] 수학연습 2 강의계획서
25 [2019-여름학기] 수학 2 강의계획서
24 [2019-여름학기] 수학연습 1 강의계획서
23 [2019-여름학기] 수학 1 강의계획서
22 [2019-1학기] 공학수학 2 강의계획서
21 [2019-1학기] 공학수학 1 강의계획서
20 [2019-1학기] 생명과학을 위한 수학 2 강의계획서
19 [2019-1학기] 수학연습 2 강의계획서
18 [2019-1학기] 수학 2 강의계획서
17 [2019-1학기] 수학의 기초와 응용 1 강의계획서
16 [2019-1학기] 인문사회계를 위한 수학 1 강의계획서
15 [2019-1학기] 경영학을 위한 수학 강의계획서
14 [2019-1학기] 생명과학을 위한 수학 1 강의계획서
13 [2019-1학기] Elementary Calculus section #003(English) Syllabus
12 [2019-1학기] 미적분학의 첫걸음 001~002강좌 강의계획서
11 [2019-1학기] 미적분학연습 1 강의계획서
10 [2019-1학기] 미적분학 1 강의계획서
9 [2019-1학기] 기초수학 1(Basic Calculus 1) 강의계획서
8 [2019-1학기] Honor Calculus Practice 1 section #005~#006(English) Syllabus
7 [2019-1학기] Honor Calculus 1 section 003(English) Syllabus
6 [2019-1학기] 고급수학연습 1 001~004강좌 강의계획서
5 [2019-1학기] 고급수학 1 001~002강좌 강의계획서
4 [2019-1학기] Calculus Practice 1 section #057~#058(English) Syllabus
3 [2019-1학기] Calculus 1 section #029(English) Syllabus
2 [2019-1학기] 수학연습 1(국어강좌) 강의계획서
1 [2019-1학기] 수학 1(국어강좌) 강의계획서

로그인폼

로그인 유지