# [2018-2학기] Honor Calculus and Practice 2 section #004(English) Syllabus

Syllabus

• Course: Honor Calculus and Practice 2
• Course Number: 033.004 004
• Allowed audiences
• Students who got C0 or better on ‘Honor Calculus and Practice 1’
• Students who got A+ on ‘Calculus 1’ or on ‘Differential and Integral Calculus 1’
• Textbook: Hongjong Kim, Calculus 2 (English translation), SNU Press
In this course, the lecture will cover advanced topics including appendices of the textbook.
Supplementary reference: Marsden and Tromba, Vector Calculus(6th ed.), W. H. Freeman, 2011
• Grading: Midterm (150 points) + Final (200 points) + Quizzes (100 points) + Homework (50 points) + Participation (50 points) = Total (550 points)
• Caution
• “F” grade for missing any of the midterm or the final.
• “F” grade for missing all quizzes.
• “F” grade for missing all homework.
• “F” grade for absence of over 1/3 of the theory classes.
• “F” grade for absence of over 1/3 of the practice classes.
• Exams
• Midterm exam Date and Time 10/20(Sat) 13:00~15:00 Ch. 10 ~ Ch. 12(including appendices)
• Final exam Date and Time 12/8(Sat) 13:00~15:00 Ch. 13 ~ Ch. 18(including some* of appendices)
*13.5.1 Proof of Poincaré’s lemma, 13.5.3 Dynamical systems, 14.5.1 Proof of Fubini’s theorem, 15.6 Divergence and Change of volume
• Quizzes
• There are four quizzes, each of which weighs 25 points.
• Schedule
# Date Coverage Points
1 9/14(Fri) Ch. 10 25
2 10/12(Fri) Ch. 11 25
3 11/9(Fri) Ch. 13 ~ Ch. 14 25
4 11/30(Fri) Ch. 15 ~ Sec. 16.1 25
* Quiz 4 rescheduled(updated 11/07).
• Tentative syllabus
!!Attention: Please note the make-up class schedule in the first week!!
Week Sections Note
1st(9/3-9/7) No class on 9/3(Mon) and 9/5(Wed)
Make-up class: 9/6(Thu), 19:00-19:50 and 20:00-20:50 (place: TBA)

10.1 Graph and level surface
10.2 Continuous function
10.3 Directional derivative
9/3(Mon) Beginning of the fall semester
2nd(9/10-9/14) 10.4 Differentiable function
10.5 Chain rule
10.6 Gradient vector and level surface
10.7 Continuously differentiable functions, Open sets, Closed sets, Bounded sets
9/14(Fri) Quiz 1(Ch. 10)
3rd(9/17-9/21) 11.1 Leibniz’s rule
11.2 Second order derivative
11.3 Taylor expansion and approximation
4th(9/24-9/28) 9/23(Sun)~9/26(Wed) Korean thanksgiving holidays
9/28(Fri) 1st quarter of the fall semester
5th(10/1-10/5) 11.4 Critical point theorem
11.5 Hessian, second derivative test
10/3(Wed) National foundation day of Korea
6th(10/8-10/12) 11.6 Lagrange multipliers
11.7 Proof of Leibniz’s rule and Calculus of variations
10/12(Fri) Quiz 2(Ch. 11)
10/9(Tue) Hangul day
7th(10/15-10/19) 12.1 Jacobian matrix
12.2 Inverse function theorem, Implicit function theorem
10/20(Sat) 13:00~15:00 midterm exam
10/15(Mon) SNU anniversary
8th(10/22-10/26) 13.1 Vector field
13.2 Line integral
13.3 Potential function
10/26(Fri) 2nd quarter of the fall semester, Withdrawal deadline
9th(10/29-11/2) 13.4 Differential form
13.5.1 Proof of Poincaré’s lemma
13.5.3 Dynamical systems
14.1 Area and volume
14.2 Multiple integral
10th(11/5-11/9) 14.3 Fubini’s theorem
14.4 Change of variables
14.5.1 Proof of Fubini’s theorem
11/9(Fri) Quiz 3(Ch. 13 ~ Ch. 14)
11th(11/12-11/16) 15.1 Vector field and divergence
15.2 Divergence theorem
15.6 Divergence and Change of volume
12th(11/19-11/23) 15.3 Plane vector field and rotation
15.4 Boundary and orientation
15.5 Green’s theorem
16.1 Surface
11/20(Tue) 3rd quarter of the fall semester
13th(11/26-11/30) 16.2 Surface area
16.3 Surface integral
16.4 Vector field and surface integral
11/30(Fri) Quiz 4(Ch. 15 ~ Sec. 16.1)
14th(12/3-12/7) 17.1 Divergence theorem
17.2 Gauss’ law
18.1 Curl
18.2 Stokes’ theorem
12/8(Sat) 13:00~15:00 Final exam
15th(12/10-12/14) 12/14(Fri) End of the fall semester
• The above schedule is tentative and may change depending on the progress of the course.

Instructor Information
Section No. Instructor E-mail Address Office Phone No.
[880-]
Lecture Time Lecture Room
004 Gerald Trutnau trutnau (at) snu.ac.kr 27-206 2629 Mon, Wed 16:00 ~ 16:50 025-101
TAs Information
Section No. TA E-mail Address Office Phone No.
[880-]
Recitation Time Recitation Room
001 김한얼 haneol.kijm (at) snu.ac.kr 27-429 2674 Fri 15:00~16:50 043-1-302

List of Articles
번호 제목 글쓴이
공지 2018학년도 과목별 강좌 안내
37 [2018-겨울학기] 수학 및 연습 2 강의계획서
36 [2018-겨울학기] 수학 및 연습 1 강의계획서
35 [2018-2학기] 공학수학 2 010, 013, 014강좌 강의계획서
34 [2018-2학기] 공학수학 1 002~004, 006강좌 강의계획서
33 [2018-2학기] Calculus for Humanities and Social Sciences 1(인문사회계를 위한 수학 1) section #002(English) Syllabus
32 [2018-2학기] 인문사회계를 위한 수학 1 001, 003강좌(국어강좌) 강의계획서
31 [2018-2학기] 생명과학을 위한 수학 1 강의계획서
30 [2018-2학기] 수학 및 연습 1 강의계획서
29 [2018-2학기] 인문사회계를 위한 수학 2 강의계획서
28 [2018-2학기] 경영학을 위한 수학 001, 002강좌 강의계획서
27 [2018-2학기] 생명과학을 위한 수학 2 강의계획서
26 [2018-2학기] 미적분학의 첫걸음(Elementary Calculus) 강의계획서
25 [2018-2학기] 기초수학 2(Basic Calculus 2) 강의계획서
» [2018-2학기] Honor Calculus and Practice 2 section #004(English) Syllabus
23 [2018-2학기] 고급수학 및 연습 2 001~003강좌 강의계획서
22 [2018-2학기] 미적분학 및 연습 2 강의계획서
21 [2018-2학기] Calculus 2 section #028(English) Syllabus
20 [2018-2학기] 수학 및 연습 2(국어강좌) 강의계획서
19 [2018-여름학기] 생명과학을 위한 수학 1 강의계획서
18 [2018-여름학기] 수학 및 연습 2 강의계획서
17 [2018-여름학기] 수학 및 연습 1 강의계획서
16 [2018-1학기] 공학수학 2 강의계획서
15 [2018-1학기] 공학수학 1 강의계획서
14 [2018-1학기] 생명과학을 위한 수학 2 강의계획서
13 [2018-1학기] 수학 및 연습 2 강의계획서
12 [2018-1학기] 수학의 기초와 응용 1 강의계획서
11 [2018-1학기] 인문사회계를 위한 수학 1 002강좌 강의계획서
10 [2018-1학기] 인문사회계를 위한 수학 1 001강좌 강의계획서
9 [2018-1학기] 경영학을 위한 수학 강의계획서
8 [2018-1학기] 생명과학을 위한 수학 1 강의계획서
7 [2018-1학기] Elementary Calculus section #003(English) Syllabus
6 [2018-1학기] 미적분학의 첫걸음(Elementary Calculus) 001~002강좌 강의계획서
5 [2018-1학기] 기초수학 1(Basic Calculus 1) 강의계획서
4 [2018-1학기] 고급수학 및 연습 1 강의계획서
3 [2018-1학기] 미적분학 및 연습 1 강의계획서
2 [2018-1학기] Calculus 1 section #029(English) Syllabus
1 [2018-1학기] 수학 및 연습 1(국어강좌) 강의계획서

로그인폼

로그인 유지