http://www.math.snu.ac.kr/board/files/attach/images/698/d7f811aae9dfd8ef6b3d16c547a28844.png
seminars
제목
2024-08-12  10:30-11:30  Quantitative Floer theory and coefficients Yusuke Kawamoto  129-406 
2015-06-16  16:00-17:30  On the Vafa-Witten equations on closed 4-manifolds Yuuji Tanaka  129-301 
2015-04-15  17:00-18:00  On the Frobenius structure constructed from the Gromov-Witten theory for an orbifold projective line with many orbifold points Yuuki Shiraishi  129-301 
2014-11-07  10:00-11:00  Stability of the CIP scheme applied to advection equations Yuusuke Iso  선택 
2023-10-25  17:00-18:30  Best constants in the vector-valued Littlewood-Paley-Stein theory Zhendong Xu  129-301 
2024-03-29  10:00-12:00  Littlewood-Paley-Stein inequality to the Burkholder-Gundy inequality Zhendong Xu  129-309 
2016-04-28  17:00-18:30  Fujita's freeness conjecture for 5-fold Zhixian Zhu  129-406 
2017-08-28  11:00-12:00  On the Kuramoto oscillators bidirectionally coupled in a ring Zhuchun Li  129-301 
2015-05-15  16:00-17:30  Regularity of Chemotaxis-Navier-Stokes equations 강경근  129-406 
2017-04-13  17:00-18:00  Existence of regular solutions for non-Newtonian Navier-Stokes equations of power-law type 강경근  129-301 
2018-07-02  16:00-17:30  Annulus SLE partition functions and martingale-observables 강남규  27-325 
2014-05-09  10:30-12:00  Normal Hankel operators with operator-valued symbols 강동오  129-301 
2014-09-24  16:00-17:00  Properties of Truncated Toeplitz operators 강동오  27-220 
2015-05-23  10:00-13:00  Intensive Lecture on truncated Toeplitz operators 강동오  27-429 
2015-05-30  10:00-13:00  Intensive Lecture on truncated Hankel operators 강동오  27-429 
2015-06-13  10:00-13:00  Intensive Lecture on Bridge Theory of operators 강동오  27-429 
2021-05-14  14:30-15:30  On the emerging asymptotic patterns of the Winfree model 강명주  27-220 
2022-11-22  17:00-18:00  Newton Polygons and Oscillatory Integral Operators 강민범  27-116 
2023-08-29  13:30-15:00  Upper Bound of the Quantitative Oppenheim Conjecture 강민찬  129-301 
2023-09-18  10:00-11:30  Upper Bound of the Quantitative Oppenheim Conjecture II 강민찬  129-301