Abstract: The mini-course is an introductory and self-contained approach to the method of intrinsic scaling, aiming at bringing to light what is really essential in this powerful tool in the analysis of degenerate and singular equations. The theory is presented from scratch for the simplest model case of the degenerate p-Laplace equation, leaving aside
technical renements needed to deal with more general situations. A striking feature of the method is its pervasiveness in terms of the applications and I hope to convince the audience of its strength as a systematic approach to regularity for an important and relevant class of nonlinear partial dierential equations. I will extensively follow my book
14 , with complements and extensions from a variety of sources (listed in the references), mainly
6,7,17

10/16()09:00 11:00 Lecture I.
An impressionist history lesson: from Hilbert's 19th problem to DeGiorgi-Nash-Moser theory; the quasilinear case { contributions from the Russian school; enters DiBenedetto { the method of intrinsic scaling.

10/17()09:00- 11:00 Lecture II.
The building blocks of the theory: local energy and logarithmic estimates. The geometric setting and an alternative.

10/19()09:00 -11:00 Lecture III.
The rst alternative: getting started; expansion in time and the role of the logarithmic estimates; reduction of the oscillation.

10/22()09:00 -11:00 Lecture IV.
Towards the Holder continuity: the second alternative; the recursive argument.

10/23()09:00 -11:00 Lecture V.
The singular case and further generalisations: immiscible uids and chemotaxis; phase transitions.
제목
2017-05-17  09:30-11:00  Extreme Value Theory in Dynamical Systems Maxim Kirsebom  27-116 
2021-10-12  09:30-11:00  Vertex algebras and chiral homology I Jethro van Ekeren  선택 
2022-05-20  09:30-11:00  Introduction to the National Institute for Mathematical Sciences and the Future of Industrial Mathematics 김현민  27-116 
2023-03-20  09:30-11:00  Homogeneous dynamics and Laplace eigenfunctions I, II, III 권상훈  129-301 
2023-03-13  09:30-11:00  Homogeneous dynamics and Laplace eigenfunctions I, II, III 권상훈  129-301 
2023-03-06  09:30-11:00  Homogeneous dynamics and Laplace eigenfunctions I, II, III 권상훈  129-301 
2023-06-23  09:30-11:00  Ergodicity of Iwasawa Continued Fractions and Markable Hyperbolic Geodesics II 박성재  129-309 
2023-06-16  09:30-11:00  Ergodicity of Iwasawa Continued Fractions and Markable Hyperbolic Geodesics 박성재  129-309 
2024-05-03  09:30-11:00  An elementary introduction to Tate homology Kevin Ruck  129-406 
2015-11-04  09:30-10:30  Introduction to deal.II Wolfgang Bangerth  선택 
2023-12-08  09:00-18:00  2023 Mini Workshop on Nonlinear PDEs from Fluid Mechanics Milton Lopes Filho 외  129-104 
2019-12-06  09:00-17:00  HYKE Intensive Lectures on Symmetric Hyperbolic Systems of Balance Laws and State file Tommaso Ruggeri / Masaru Sugiyama  27-220 
2019-12-04  09:00-13:00  HYKE Intensive Lectures on Symmetric Hyperbolic Systems of Balance Laws and State file Tommaso Ruggeri / Masaru Sugiyama  27-116 
2014-05-30  09:00-12:00  Well-posedness in anisotropic conductivity reconstruction 이민기  129-104 
2019-12-30  09:00-12:00  The Distribution of Lattice orbits on homogeneous spaces 이정원  27-116 
2021-07-26  09:00-12:00  On the Cauchy problem for quasilinear dispersive PDEs Ⅰ 오성진  선택 
2023-10-13  09:00-12:00  HYKE-Hwarang Intensive Lectures Hayato Chiba  27-325 
2015-05-29  09:00-11:00  Regularity for elliptic and parabolic equations Lihe Wang  27-116 
2015-11-14  09:00-11:00  What are the nonlinear matrix equations? file 김현민  27-325 
2018-10-16  09:00-11:00  An introduction to intrinsic scaling Lecuture 1 Jose Miguel Urbano  27-325