Concordance is a relation which classifies knots in 3-space via surfaces in 4-space, and it is closely related with low dimensional topology. Satellite operators are one of the main tools in the study of knot concordance, and it has been wi...
작용수대수에서 순서구조가 중요한 역할을 한다. C*-대수의 시작이라 할 수 있는 Gelfand-Naimark-Segal 표현정리는 양선형범함수로부터 *-준동형을 만들어내는데, 그 표현정리 이후 여러 가지 종류의 양사상에 대한 연구가 이루어졌다. 최근 활발하게 연구되...
※ 강연 뒷부분이 녹화되지 않았습니다. A symplectic manifold is a space with a global structure on which Hamiltonian equations are defined. A classical result by Darboux says that every symplectic manifold locally looks standard, so it has be...
Equations defining algebraic curves and their tangent and secant varieties
It is a fundamental problem in algebraic geometry to study equations defining algebraic curves. In 1984, Mark Green formulated a famous conjecture on equations defining canonical curves and their syzygies. In early 2000's, Claire Voisin...
Among many different ways to introduce derived algebraic geometry is an interplay between ordinary algebraic geometry and homotopy theory. The infinity-category theory, as a manifestation of homotopy theory, supplies better descent results ...
Toward bridging a connection between machine learning and applied mathematics
This lecture explores the topics and areas that have guided my research in computational mathematics and deep learning in recent years. Numerical methods in computational science are essential for comprehending real-world phenomena, and dee...
Vlasov-Maxwell equations and the Dynamics of Plasmas
In this colloquium talk, we study the Vlasov-Maxwell equations, a collisionless model in the field of kinetic theory. The model is a fundamental model for the dynamics of plasmas and was introduced in 1938 by Vlasov. Due to the hyperbolic n...
Study stochastic biochemical systems via their underlying network structures
When a biological system is modeled using a mathematical process, the following step is normally to estimate the system parameters. Despite the numerous computational and statistical techniques, estimating parameters for complex systems can...
Birational Geometry of varieties with effective anti-canonical divisors
Fano varieties are fundamental objects in algebraic geometry. These can be considered as the unique output of the -K -minimal model program on the varieties with effective anticanonical divisors. Thus the initial models should encode the in...
Contact instantons and entanglement of Legendrian links
We introduce a conformally invariant nonlinear sigma model on the bulk of contact manifolds with boundary condition on the Legendrian links in any odd dimension. We call any finite energy solution a contact instanton. We also explain its Ha...
<학부생을 위한 ɛ 강연> Self-Supervised Learning in Computer Vision
In recent years, artificial intelligence has made remarkable progress in developing algorithms that can learn from vast amounts of carefully labeled data. This paradigm of supervised learning has made great success in training specialist mo...
It is a fascinating and challenging problem to count number fields with bounded discriminant. It has so many applications in number theory. We give two examples. First, we compute the average of the smallest primes belonging to a conjugacy ...
Towards Trustworthy Scientific Machine Learning: Theory, Algorithms, and Applications
Machine learning (ML) has achieved unprecedented empirical success in diverse applications. It now has been applied to solve scientific problems, which has become an emerging field, Scientific Machine Learning (SciML). Many ML techniques, h...
Contact topology of singularities and symplectic fillings
For an isolated singularity, the intersection with a small sphere forms a smooth manifold, called the link of a singularity. It admits a canonical contact structure, and this turns out to be a fine invariant of singularities and provides an...
<2020년도 젊은 과학자상 수상 기념강연> Metastability of stochastic systems
Metastability란 random process가 여러 개의 안정된 상태를 가질 때 반드시 나타나는 현상으로, 수리물리학이나 화학의 여러 모형들은 물론 딥러닝의 알고리즘 등 다양한 곳에서 공통적으로 나타나는 현상이다. 본 강연에서는 이 Metastability를 수학적으로...
Geometric Langlands theory: A bridge between number theory and physics
※ 강연 앞 부분이 잘렸습니다. (강연자료 다운: Geometric Langlands Theory [A Bridge between Number Theory and Physics] (2022.04.28).pdf ) 초록: The Langlands program consists of a tantalizing collection of surprising results and conjectures w...