2013 년 2 학기 TA 자격 시험: 선형대수학
 2013/07/22, 15:00-17:30

1. State the following theorems. You don't have to give any proof.
a) Primary decomposition theorem for finitely generated torsion modules over a principal ideal domain
b) Cyclic decomposition theorem for finitely generated primary modules over a principal ideal domain
2. Let V be a finite-dimensional vector space and W be its subspace. Define

$$
\mathbf{W}^{\prime}=\left\{f \in \mathbf{V}^{*}: f(\mathbf{v})=0 \text { for any } \mathbf{v} \in \mathbf{W}\right\},
$$

which is actually a subspace of V^{*}.
a) Prove that $\operatorname{dim} W+\operatorname{dim} W^{\prime}=\operatorname{dim} V$.
b) Let T be a linear operator on V. Then show that $N\left(T^{t}\right)=R(T)^{\prime}$.
3. Let $\mathrm{T}=\mathrm{L}_{A}: F^{4} \rightarrow F^{4}$, where

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
-2 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

a) Find the characteristic polynomial of A.
b) Determine the rational canonical form of A in each case of $F=\mathbb{F}_{2}$ and $F=\mathbb{F}_{3}$, where \mathbb{F}_{q} denotes the finite field of q elements.
4. Prove briefly or give a counterexample to disprove the following statements:
a) For any $A \in \mathcal{M}_{n}(k)$, the characteristic polynomial and the minimal polynomial of A have the same zeros in \bar{k}.
b) Every orthogonal operator in \mathbb{R}^{2} can be decomposed as a composition of at most two relections about lines.
c) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator on a finite-dimensional inner product space V and $\mathfrak{B}=\left\{\mathbf{v}_{i}\right\}$ be an orthonormal basis for V . If $\left\|\mathrm{T}\left(\mathbf{v}_{i}\right)\right\|=\left\|\mathbf{v}_{i}\right\|$ holds for any $\mathbf{v}_{i} \in \mathfrak{B}$, then T is an isometry.
5. Let $\mathrm{V}=\mathcal{M}_{2}(\mathbb{C})$ and definte an inner product \langle,$\rangle on \mathrm{V}$ by $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)$.
a) Let $\mathbb{A}_{2}:=\{A \in \mathrm{~V}: \operatorname{tr} A=0\}$ be a subspace of V . Construct an orthonormal bases for \mathbb{A}_{2}.
b) Construct a nonzero linear functional $f \in \mathrm{~V}^{*}$ satisfying $f(A)=0$ for $A \in\left\langle e^{11}-e^{22}, e^{12}\right\rangle$.
6. Let V be an inner product space, and W be its finite-dimensional subspace.
a) Show that $\left(W^{\perp}\right)^{\perp}=W$.
b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator on V . Then prove that $\mathrm{N}(\mathrm{T})^{\perp}=\mathrm{R}\left(\mathrm{T}^{*}\right)$.
c) Prove that the maximum number of linearly independent row vectors and the maximum number of linearly independent column vectors of a matrix are same. (Hint: You may use b) of this problem or Problem 2.)
d) Find the minimal solution of the equation:

$$
\begin{aligned}
x+y+2 z & =6 \\
2 x-z & =5
\end{aligned}
$$

Explain briefly why your solution is unique.
7. Let V, W be finite-dimensional vector spaces over $\mathbb{Q}(i)$ and H_{1}, H_{2} be non-degenerate Hermitian forms on V, W, respectively.
a) Show that for every linear functional f on V, there exists a unique vector $\mathbf{v}^{\prime} \in \mathrm{V}$ such that $\mathrm{f}(\mathbf{v})=H_{1}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)$. And this induces a conjugate-linear bijective map $\phi_{\mathbf{V}}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$.
b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then show that T induces the adjoint map $T^{*}: W \rightarrow V$ satisfying the relation

$$
H_{2}(\mathbf{T} \mathbf{v}, \mathbf{w})=H_{1}\left(\mathbf{v}, \mathbf{T}^{*} \mathbf{w}\right) .
$$

Show also that T* is linear.
c) Prove that the transpose operator $\mathrm{T}^{t}: \mathrm{W}^{*} \rightarrow \mathrm{~V}^{*}$ of T can be decomposed as

$$
\mathrm{T}^{t}=\phi_{\mathrm{V}}^{-1} \mathrm{~T}^{*} \phi_{\mathrm{W}}
$$

8. Let R be a commutative ring with 1 and M, N be R-modules.
a) State the universal property of the tensor product of R-modules M and N.
b) Prove that $R \otimes M \simeq M$ as R-modules.
