2014년 2학기 TA 자격 시험: 선형대수학

2014/07/22, 15:00-17:30

- 1. Consider $V = \mathbb{F}_3^3$, the 3-dimensional vector space over \mathbb{F}_3 , the finite field of three elements.
 - a) Find the number of *invertible* linear operators on V.
 - b) Let *B* be the bilinear form on V with the Gram matrix with respect to the standard ordered basis $M_{\mathcal{S}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Then find the number of elements of the *orthogonal*

group, that is, find the number of the set $\{P \in \mathcal{M}_3(\mathbb{F}_3) : P^t M_S P = M_S\}$.

2. Evaluate the determinants of the following 2014×2014 matrices.

a)
$$A = (a_{ij}) = \begin{cases} 2 & \text{if } i = j, \\ 1 & \text{if } |i - j| = 1, \\ 0 & \text{otherwise} \end{cases}$$
 b) $B = (b_{ij}) = \begin{cases} a & \text{for } i = j, \\ b & \text{for } i \neq j \end{cases}$

- 3. Give a brief answer for each problem.
 - a) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Then show that if λ is a nonzero eigenvalue of AB, it is also an eigenvalue of BA.
 - b) For any orthogonal operator T on \mathbb{R}^3 with determinant 1, prove that $\det(\mathsf{T}-\mathsf{I}) = 0$.
 - c) Find a diagonal matrix D and unitary matrices P, Q satisfying $PDQ = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$.
- 4. Let V be an *infinite-dimensional* complex inner product space.
 - a) Give an example of a maximal orthonormal set which cannot be a basis for V.
 - b) Give an example of *normal* operator T which has no eigenvalue.
- 5. Let $T = L_A$, the linear operator on F^3 defined by left-multiplication of A, where

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -7 & 10 & 15 \\ 5 & -7 & -11 \end{pmatrix}.$$

For each field \mathbb{Q} and \mathbb{F}_3 , find a rational canonical form or a Jordan canonical form of A. (If the characteristic polynomial over F splits, give a Jordan form. Otherwise, give a rational form.) You have to find a suitable canonical basis for each case.

- 6. Let $V = P^2(\mathbb{R})$, and $\mathcal{B} = \{1, x\}$ be the standard ordered basis for $W \leq V$, and $\langle p(x), q(x) \rangle := \int_0^\infty e^{-x} p(x) q(x) dx$ be an inner product on V.
 - a) Construct an orthonormal basis for W with respect to the given inner product.
 - b) Decompose $x^2 = p(x) + q(x)$, where $p(x) \in W$ and $q(x) \in W^{\perp}$.
 - c) Let T(p(x)) = p'(x) be a linear operator on V. Then find the matrix representation of the adjoint operator T^*_W with respect to the standard ordered basis for $\mathsf{W}.$ (One can easily verify that W is T-invariant and T_W also has the adjoint.)
- 7. Let B be a *non-degenerate* bilinear form on a finite dimensional space V.
 - a) For any linear functional f on V, prove that there exists a unique vector $\mathbf{w} \in V$ satisfying $f(\mathbf{v}) = B(\mathbf{v}, \mathbf{w})$.
 - b) For any subspace $\mathsf{W} \leq \mathsf{V},$ show that $\dim \mathsf{W} + \dim \mathsf{W}^\perp = \dim \mathsf{V}.$
 - c) Let B be a symmetric bilinear form on \mathbb{Q}^3 with the Gram matrix with respect to the standard ordered basis $M_{\mathcal{S}} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, and let $\mathsf{W} := \langle \mathbf{e}_1, \mathbf{e}_3 \rangle$. Then find a basis for W^{\perp} .

- d) If W is a non-singular subspace of V, that is, $rad(W) = \{0\}$, prove that $V = W \oplus W^{\perp}$.
- e) If B is alternating, then show that dim V must be even.