2014년 2학기 TA 자격 시험: 선형대수학
 2014/07/22, 15:00-17:30

1. Consider $V=\mathbb{F}_{3}^{3}$, the 3-dimensional vector space over \mathbb{F}_{3}, the finite field of three elements.
a) Find the number of invertible linear operators on V .
b) Let B be the bilinear form on V with the Gram matrix with respect to the standard ordred basis $M_{\mathcal{S}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$. Then find the number of elements of the orthogonal group, that is, find the number of the set $\left\{P \in \mathcal{M}_{3}\left(\mathbb{F}_{3}\right): P^{t} M_{\mathcal{S}} P=M_{\mathcal{S}}\right\}$.
2. Evaluate the determinants of the following 2014×2014 matrices.
a) $A=\left(a_{i j}\right)= \begin{cases}2 & \text { if } i=j, \\ 1 & \text { if }|i-j|=1, \\ 0 & \text { otherwise }\end{cases}$
b) $B=\left(b_{i j}\right)= \begin{cases}a & \text { for } i=j, \\ b & \text { for } i \neq j\end{cases}$
3. Give a brief answer for each problem.
a) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Then show that if λ is a nonzero eigenvalue of $A B$, it is also an eigenvalue of $B A$.
b) For any orthogonal operator T on \mathbb{R}^{3} with determinant 1 , prove that $\operatorname{det}(T-I)=0$.
c) Find a diagonal matrix D and unitary matrices P, Q satisfying $P D Q=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$.
4. Let V be an infinite-dimensional complex inner product space.
a) Give an example of a maximal orthonormal set which cannot be a basis for V .
b) Give an example of normal operator T which has no eigenvalue.
5. Let $\mathrm{T}=\mathrm{L}_{A}$, the linear operator on F^{3} defined by left-multiplication of A, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & -2 \\
-7 & 10 & 15 \\
5 & -7 & -11
\end{array}\right)
$$

For each field \mathbb{Q} and \mathbb{F}_{3}, find a rational canonical form or a Jordan canonical form of A. (If the characteristic polynomial over F splits, give a Jordan form. Otherwise, give a rational form.) You have to find a suitable canonical basis for each case.
6. Let $\mathrm{V}=\mathrm{P}^{2}(\mathbb{R})$, and $\mathcal{B}=\{1, x\}$ be the standard ordered basis for $\mathrm{W} \leq \mathrm{V}$, and $\langle p(x), q(x)\rangle:=\int_{0}^{\infty} e^{-x} p(x) q(x) d x$ be an inner product on V .
a) Construct an orthonormal basis for W with respect to the given inner product.
b) Decompose $x^{2}=p(x)+q(x)$, where $p(x) \in \mathrm{W}$ and $q(x) \in \mathbf{W}^{\perp}$.
c) Let $\mathrm{T}(p(x))=p^{\prime}(x)$ be a linear operator on V . Then find the matrix representation of the adjoint operator $\mathrm{T}_{\mathrm{W}}^{*}$ with respect to the standard ordered basis for W . (One can easily verify that W is T -invariant and T_{W} also has the adjoint.)
7. Let B be a non-degenerate bilinear form on a finite dimensional space V .
a) For any linear functional f on V , prove that there exists a unique vector $\mathbf{w} \in \mathrm{V}$ satisfying $f(\mathbf{v})=B(\mathbf{v}, \mathbf{w})$.
b) For any subspace $\mathrm{W} \leq \mathrm{V}$, show that $\operatorname{dim} \mathrm{W}+\operatorname{dim} \mathrm{W}^{\perp}=\operatorname{dim} \mathrm{V}$.
c) Let B be a symmetric bilinear form on \mathbb{Q}^{3} with the Gram matrix with respect to the standard ordered basis $M_{\mathcal{S}}=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$, and let $\mathrm{W}:=\left\langle\mathbf{e}_{1}, \mathbf{e}_{3}\right\rangle$. Then find a basis for W^{\perp}.
d) If W is a non-singular subspace of V, that is, $\operatorname{rad}(W)=\{0\}$, prove that $V=W \oplus W^{\perp}$.
e) If B is alternating, then show that $\operatorname{dim} \mathrm{V}$ must be even.

