2014년 1 학기 TA 자격 시험: 선형대수학 2014/01/24, 15:00-17:30

In each problem, assume that V, W, \ldots are finite-dimensional vector spaces over a field F.

- 1. Let $\mathcal{M}_n(F)$ be the set of $n \times n$ matrices over F.
 - a) Find the number of *invertible* matrices in $\mathcal{M}_n(F)$ when $F = \mathbb{F}_q$, the finite field of q elements.
 - b) Prove that the ring $\mathcal{M}_n(F)$ has no nonzero proper ideal.
- 2. Let T be a linear operator on V and W be a proper T-invariant subspace of V.
 - a) For any $\mathbf{v} \in \mathsf{V}$, show that $I := \{f(x) \in F[x] : f(\mathsf{T})\mathbf{v} \in \mathsf{W}\}$ is an ideal in F[x].
 - b) Assume the minimal polynomial of T splits into linear factors. Then prove that there exists a vector $\mathbf{v} \notin W$ in V, but $(T \lambda I_V)\mathbf{v} \in W$ for some eigenvalue λ of T. (Hint: Consider the monic generator of I in a).)
- 3. Let $T = L_A$, the linear operator on F^3 defined by $T\mathbf{v} = A\mathbf{v}$, where

$$A = \begin{pmatrix} 8 & 24 & -5 \\ 3 & -9 & 2 \\ 0 & 1 & 1 \end{pmatrix}.$$

- a) When $F = \mathbb{Q}$, find a rational canonical basis for F^3 to find a rational canonical form of A.
- b) When $F = \mathbb{F}_3$, the finite field of 3 elements, find a Jordan canonical basis for F^3 to find a Jordan canonical form of A.
- 4. Let T be a linear operator on an inner product space $\mathsf{V}.$
 - a) Assume the inner product is *complex* and $\langle T\mathbf{v}, \mathbf{v} \rangle = 0$ for any $\mathbf{v} \in V$, then show that T = 0.
 - b) Assume the inner product is *real* and $||T\mathbf{v}|| = ||\mathbf{v}||$ for any $\mathbf{v} \in V$, then show that $T^*T = I_V$.

- 5. Let T be a linear operator on an inner product space V of rank r.
 - a) Prove that there exist orthonormal bases $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ and $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ for V and positive scalars $\sigma_1 \geq \cdots \geq \sigma_r$ such that

$$\mathsf{T}\mathbf{v}_i = \begin{cases} \sigma_i \mathbf{w}_i & \text{for } 1 \le i \le r, \\ 0 & \text{for } i > r. \end{cases}$$

b) Let $\mathsf{T} = \mathsf{L}_A$, the linear operator on \mathbb{R}^3 defined by $\mathsf{T}\mathbf{v} = A\mathbf{v}$, where

$$A = \begin{pmatrix} -1 & 1 & 1\\ 2 & 0 & 2\\ -1 & -1 & -3 \end{pmatrix}.$$

Find the least square approximation of the equation $A\mathbf{x} = \mathbf{b} = (-1, 2, 1)^t$, that is, find $\mathbf{x} \in \mathbb{R}^3$ minimizing $||A\mathbf{x} - \mathbf{b}||^2$.

- 6. Let *B* be a non-degenerate symmetric bilinear form on V. Let $\mathcal{B} = {\mathbf{v}_i}$ be a basis for V and $\mathcal{B}^* = {f_i}$ be the dual basis of \mathcal{B} .
 - a) Consider $\varphi : \mathsf{V} \to \mathsf{V}^*$ defined by $\varphi(\mathbf{w}) = f_{\mathbf{w}}$, where $f_{\mathbf{w}}(\mathbf{v}) = B(\mathbf{v}, \mathbf{w})$. Show that φ is an isomorphism and find the matrix representation $[\varphi]_{\mathcal{B},\mathcal{B}^*}$.
 - b) Show that there exists another basis $C = \{\mathbf{w}_j\}$ for V satisfying $B(\mathbf{v}_i, \mathbf{w}_j) = \delta_{ij}$, and find the matrix representation of B with respect to C.
 - c) Let $M = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ be the matrix representation of B on $\mathsf{V} = \mathbb{Q}^3$ with respect to

the standard ordered basis $\{e_1, e_2, e_3\}$. Then construct an orthogonal basis for V.

- 7. a) State the universal property of the tensor product of R-modules M, N.
 - b) Let $\mathcal{B} = {\mathbf{v}_i}, \mathcal{C} = {\mathbf{w}_j}$ be bases for V,W respectively. Then show that ${\mathbf{v}_i \otimes \mathbf{w}_j}$ forms a basis for $\mathsf{V} \otimes \mathsf{W}$.
 - c) Let $f \in V^*$, $g \in W^*$ be linear functionals on V,W respectively. Consider the *bilinear* map $\varphi : V \times W \to F$ defined by $\varphi(\mathbf{v}, \mathbf{w}) = f(\mathbf{v})g(\mathbf{w})$. Then use the universal property in a) to induce a map $\Phi : V^* \otimes W^* \to (V \otimes W)^*$ defined by $\Phi(f \otimes g)(\mathbf{v} \otimes \mathbf{w}) = f(\mathbf{v})g(\mathbf{w})$, and show that Φ is an isomorphism.