2015년 1학기 TA 자격 시험: 선형대수학
 2015/01/23, 14:30-17:00

1. State the following theorems. You don't have to give any proof.
a) Primary decompsition theorem for finitely generated torsion modules over a principal ideal domain.
b) Cyclic decomposition theorem for finitely generated primary modules over a principal ideal domain.
2. Give a brief proof for each statement.
a) The matrix ring $\mathcal{M}_{n}(F)$ has no nontrivial proper ideal.
b) Let $f(t)$ be a polynomial of degree n with the leading coefficient $(-1)^{n}$. Then there exists an $n \times n$ matrix whose characteristic polynomial is $f(t)$.
c) Let M be a free module of rank 2 over a principal ideal domain R, and N be its submodule. Then N is also free.
d) Let T be an linear operator on a finite-dimensional complex inner product space V , and T^{*} be its adjoint. Then $\mathrm{T}^{*}=g(\mathrm{~T})$ for some polynomial $g(t) \in \mathbb{C}[t]$ if and only if T is normal.
3. Consider $\mathrm{T}=\mathrm{L}_{A}$, the linear operator on \mathbb{R}^{2015}, where

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & 2015 \\
2016 & 2017 & \cdots & 4030 \\
\vdots & \vdots & & \vdots \\
(2015)^{2}-2014 & (2015)^{2}-2013 & \cdots & (2015)^{2}
\end{array}\right)
$$

a) (10) Show that the 2 -dimensional subspace generated by $\left\{(1,1, \ldots, 1)^{t},(1,2, \ldots, 2015)^{t}\right\}$ is T -invariant.
b) Determine $\chi_{\mathrm{T}}(t)$, the characteristic polynomial of T .
c) (10) Determine $m_{\mathrm{T}}(t)$, the minimal polynomial of T .
4. Let V be a complex inner product space and W be a subspace of V .
a) Show that $\left(\mathrm{W}^{\perp}\right)^{\perp}=\mathrm{W}$ if W is finite-dimensional.
b) Give an example of a subspace W such that the result of a) does not hold when W is infinite-dimensional.
5. Let T be a linear operator on an inner product space V of rank r.
a) Prove that there exist orthonormal bases $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ for V and positive scalars $\sigma_{1} \geq \cdots \geq \sigma_{r}$ such that

$$
\mathbf{T}_{\mathbf{v}_{i}}= \begin{cases}\sigma_{i} \mathbf{w}_{i} & \text { for } 1 \leq i \leq r, \\ 0 & \text { for } i>r\end{cases}
$$

b) (10) Let $\mathrm{T}=\mathrm{L}_{A}$, the linear operator on \mathbb{R}^{3}, where

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
2 & 0 & 2 \\
-1 & -1 & -3
\end{array}\right)
$$

Then find the pseudoinverse of A, that is, find the matrix representation of the map $\mathrm{T}^{-}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfying $\mathrm{T}^{-} \mathrm{T}=\mathrm{Id}_{\mathrm{N}(\mathrm{T})^{\perp}}$ and $\mathrm{TT}^{-}=\mathrm{Id}_{\mathrm{R}(\mathrm{T})}$ with respect to the standard ordered basis.
c) Consider the system of linear equations $A \mathbf{x}=\mathbf{b}$, which is inconsistent. Then show that $\mathbf{x}=A^{-} \mathbf{b}$ is the least square approximation of this system minimizing $\|A \mathbf{x}-\mathbf{b}\|$.
6. Let H be a non-degenerate Hermitian form on a finite dimensional space V over $\mathbb{Q}(\sqrt{-2})$.
a) For any linear functional f on V , prove that there exists a unique vector $\mathbf{w} \in \mathrm{V}$ satisfying $f(\mathbf{v})=H(\mathbf{v}, \mathbf{w})$.
b) For any subspace $W \leq V$, show that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V$.
c) Let H be a Hermitian form on V with the matrix representation with respect to the standard ordered basis $M_{\mathcal{S}}=\left(\begin{array}{cc}3 & \sqrt{-2} \\ -\sqrt{-2} & 3\end{array}\right)$. Then construct an orthogonal basis, that is, find a basis \mathcal{B} such that $M_{\mathcal{B}}$ is diagonal.

