2015년 1학기 TA 자격 시험: 선형대수학

2015/01/23, 14:30-17:00

- 1. State the following theorems. You don't have to give any proof.
 - a) Primary decompsition theorem for finitely generated torsion modules over a principal ideal domain.
 - b) Cyclic decomposition theorem for finitely generated primary modules over a principal ideal domain.
- 2. Give a brief proof for each statement.
 - a) The matrix ring $\mathcal{M}_n(F)$ has no nontrivial proper ideal.
 - b) Let f(t) be a polynomial of degree n with the leading coefficient $(-1)^n$. Then there exists an $n \times n$ matrix whose characteristic polynomial is f(t).
 - c) Let M be a *free* module of rank 2 over a principal ideal domain R, and N be its submodule. Then N is also free.
 - d) Let T be an linear operator on a finite-dimensional complex inner product space V, and T^{*} be its adjoint. Then $T^* = g(T)$ for some polynomial $g(t) \in \mathbb{C}[t]$ if and only if T is normal.
- 3. Consider $\mathsf{T} = \mathsf{L}_A$, the linear operator on \mathbb{R}^{2015} , where

$$\begin{pmatrix} 1 & 2 & \cdots & 2015 \\ 2016 & 2017 & \cdots & 4030 \\ \vdots & \vdots & & \vdots \\ (2015)^2 - 2014 & (2015)^2 - 2013 & \cdots & (2015)^2 \end{pmatrix}$$

- a) (10) Show that the 2-dimensional subspace generated by $\{(1, 1, ..., 1)^t, (1, 2, ..., 2015)^t\}$ is T-invariant.
- b) Determine $\chi_{\mathsf{T}}(t)$, the characteristic polynomial of T .
- c) (10) Determine $m_{\mathsf{T}}(t)$, the minimal polynomial of T .
- 4. Let V be a complex inner product space and W be a subspace of V.
 - a) Show that $(W^{\perp})^{\perp} = W$ if W is *finite-dimensional*.
 - b) Give an example of a subspace W such that the result of a) does not hold when W is *infinite-dimensional*.

- 5. Let T be a linear operator on an inner product space V of rank r.
 - a) Prove that there exist orthonormal bases $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ and $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ for V and positive scalars $\sigma_1 \geq \cdots \geq \sigma_r$ such that

$$\mathsf{T}\mathbf{v}_i = \begin{cases} \sigma_i \mathbf{w}_i & \text{for } 1 \le i \le r, \\ 0 & \text{for } i > r. \end{cases}$$

b) (10) Let $\mathsf{T} = \mathsf{L}_A$, the linear operator on \mathbb{R}^3 , where

$$A = \begin{pmatrix} -1 & 1 & 1\\ 2 & 0 & 2\\ -1 & -1 & -3 \end{pmatrix}.$$

Then find the *pseudoinverse* of A, that is, find the matrix representation of the map $T^- : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying $T^-T = \mathsf{Id}_{\mathsf{N}(\mathsf{T})^{\perp}}$ and $\mathsf{T}\mathsf{T}^- = \mathsf{Id}_{\mathsf{R}(\mathsf{T})}$ with respect to the standard ordered basis.

- c) Consider the system of linear equations $A\mathbf{x} = \mathbf{b}$, which is *inconsistent*. Then show that $\mathbf{x} = A^{-}\mathbf{b}$ is the least square approximation of this system minimizing $||A\mathbf{x} \mathbf{b}||$.
- 6. Let H be a non-degenerate Hermitian form on a finite dimensional space V over $\mathbb{Q}(\sqrt{-2})$.
 - a) For any linear functional f on V, prove that there exists a unique vector $\mathbf{w} \in \mathsf{V}$ satisfying $f(\mathbf{v}) = H(\mathbf{v}, \mathbf{w})$.
 - b) For any subspace $\mathsf{W} \leq \mathsf{V},$ show that $\dim \mathsf{W} + \dim \mathsf{W}^\perp = \dim \mathsf{V}.$
 - c) Let H be a Hermitian form on V with the matrix representation with respect to the standard ordered basis $M_{\mathcal{S}} = \begin{pmatrix} 3 & \sqrt{-2} \\ -\sqrt{-2} & 3 \end{pmatrix}$. Then construct an orthogonal basis, that is, find a basis \mathcal{B} such that $M_{\mathcal{B}}$ is diagonal.