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1 Introduction

After the famous Lagrange’s four square theorem [15], all positive definite
classic integral quaternary quadratic forms that represent all positive inte-
gers, which we call universal quaternary forms, have been completely de-
termined (see [1],[3],[5],[23] and [24]). In 1926, Kloosterman [14] determined
all positive definite diagonal quaternary quadratic forms that represent all
sufficiently large integers, which we call almost universal forms, although
he did not succeed in proving the almost universality of four candidate
forms. Pall [21] proved the almost universality for the remaining quadratic
forms and in fact, there are exactly 199 almost universal quaternary diago-
nal quadratic forms that are anisotropic over some ring of p-adic integers.
Furthermore Pall and Ross [22] proved that there exist only finitely many
almost universal quaternary quadratic forms that are anisotropic over some
ring of p-adic integers by providing a upper bound of the discriminant of
such forms. On the other hand, they proved that every positive definite
quaternary quadratic form L such that Lp := L ⊗ Zp represents all p-adic
integers and is isotropic over Zp for all primes p is almost universal (see also
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Theorem 2.1 of [8]). Therefore there are infinitely many almost universal
quaternary quadratic forms.

As a natural generalization to higher rank case, we [10] proved that there
are exactly eleven quinary positive integral quadratic forms that represent
all positive integral binary quadratic forms. (See also [11], [12] and [18].) As a
natural generalization of a result of Halmos [7], Hwang [9] proved that there
are exactly 3 quinary diagonal positive definite integral quadratic forms that
represent all binary positive definite integral quadratic forms except only
one.

In this paper, we prove that if n ≥ 2, there are only finitely many positive
definite integral quadratic forms of rank n+3 that represent all but at most
finitely many equivalence classes of positive definite integral quadratic forms
of rank n. We call such quadratic forms almost n-universal quadratic forms.
Furthermore we determine all candidates for almost n-universal diagonal
quadratic forms of rank n + 3 and prove the almost n-universality, and
determine the n-ary lattices that are not represented, for all but four of the
candidate forms.

We shall adopt lattice theoretic language. A Z-lattice L is a finitely
generated free Z-module in Rn equipped with a non-degenerate symmetric
bilinear form B, such that B(L,L) ⊆ Z. The corresponding quadratic map
is denoted by Q.

For a Z-lattice L = Ze1 + Ze2 + · · ·+ Zen with basis e1, e2, · · · , en, we
write

L = (B(ei, ej)).

By L = L1 ⊥ L2 we mean L = L1 ⊕ L2 and B(e1, e2) = 0 for all e1 ∈
L1, e2 ∈ L2. We call L diagonal if it admits an orthogonal basis and in this
case, we simply write

L = 〈Q(e1), Q(e2), · · · , Q(en)〉,

where {e1, e2, · · · , en} is an orthogonal basis of L. We call L non-diagonal
otherwise. L is called positive definite or simply positive if Q(e) > 0 for any
e ∈ L, e 6= 0. As usual, dL := det(B(ei, ej)) is called the discriminant of
L. For a Z-lattice L and a prime p, we define Lp := ZpL and call it the
localization of L at p.

Let `, L be Z-lattices. We say L represents ` if there is an injective linear
map from ` into L that preserves the bilinear form, and write `→ L. Such a
map will be called a representation. A representation is called an isometry if
it is surjective. Furthermore we say ` is primitively represented by L if there
exists an isometry σ from ` to L such that σ(`) is a primitive sublattice of
L. We say two Z-lattices L,K are isometric if there is an isometry between
them, and write L ∼= K. The set of all Z-lattices that are isometric to L is
called the class of L, denoted by cls(L). We define `p → Lp and Lp ∼= Kp in
a similar manner over Zp. The set of all Z-lattices K such that Lp ∼= Kp for
all prime spots p (including∞) is called the genus of L, denoted by gen(L).
The number of classes in a genus is called the class number of the genus
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(or of any Z-lattice in the genus), which is known to be finite. For the class
number of each Z-lattice, see [4], [16] and [17].

A positive Z-lattice L is called almost n-universal if L represents all n-
ary positive Z-lattices except those in only finitely many equivalence classes.
The notion of (locally) n-universal is defined in a similar manner. If a Z-
lattice L is almost n-universal, then the rank of L is greater than or equal
to n+ 3.

We set

[a, b, c] :=

(
a b
b c

)
for convenience. For unexplained terminologies, notations, and basic facts
about Z-lattices, we refer the readers to O’Meara’s book [19].

2 Finiteness of almost n-universal Z-lattices of rank n+ 2(n ≥ 2)

The following definition of successive minimum is adapted from [[2], Chap-
ter 12].

Definition 2.1 Let L be a Z-lattice of rank n. We define the j-th successive
minimum mj(L) of L to be the positive integer such that
(1) the set of vectors v ∈ L with Q(v) ≤ mj(L) spans a subspace of dimen-
sion greater than or equal to j ;
(2) the set of vectors v ∈ L with Q(v) < mj(L) spans a subspace of dimen-
sion less than j.

It is clear that m1(L) ≤ m2(L) ≤ · · · ≤ mn(L) and there is a set of
linearly independent vectors xj , j = 1, 2, . . . , n, such that Q(xj) = mj(L).
If dL is the discriminant of L, then

dL ≤
n∏
i=1

mi(L) ≤ C · dL, (1)

for a constant C depending only on n (see [6]).

Proposition 2.2 If there exist only finitely many almost 2-universal quinary
Z-lattices, then there exist only finitely many almost n-universal Z-lattices
of rank n+ 3 for n ≥ 2.

Proof. Assume that L is an almost n-universal Z-lattice of rank n+ 3. If L
cannot represent a Z-lattice ` of rank n− 1, then for any positive integer a,
`⊥〈a〉 6−→ L. Therefore L must be (n− 1)-universal Z-lattice. This implies
that n ≤ 6 by [18]. Furthermore since L represents 1, L ' L′⊥〈1〉 for an
almost (n− 1)-universal Z-lattice L′. Therefore the desired result follows.

Now we prove that there exist only finitely many almost 2-universal quinary
Z-lattices. Note that every almost 2-universal Z-lattice is, in fact, locally 2-
universal.
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Lemma 2.3 Let L be a quinary Zp-lattice and L =⊥ Li be it’s Jordan
decomposition. We define di := d(Li) the discriminant of Li and ri the
rank of Li. Then L is 2-universal over Zp if and only if

(1) p 6= 2

r0 = 5 or r0 = 4, d0 = 1 or
r0 = 4, d0 = ∆p and r1 = 1 or r0 = 3, r1 = 2.

(2) p = 2

r0 = 5 or r0 = 4, r1 = 1 or r0 = 4, d0 ≡ 3 (mod 4) and r2 = 1 or
r0 = 3, 1 ≤ r1 and r1 + r2 + r3 = 2.

Here ∆p is any nonsquare unit in Zp.

Proof. This follows directly from [20].

Lemma 2.4 Let L be any locally 2-universal Z-lattice of rank 5 and for
all prime p, let d(Lp) = pupαp, where αp is a unit in Zp and up is a non-
negative integer. Then there exists a prime p dividing 2dL such that L cannot
primitively represent binary Z-lattices ` for which

`p ' 〈pεpαp, pkβp〉,

where εp is 0 or 1, respectively the parity of up, βp is any unit in Zp and
k ≥ 2 if p is odd and k ≥ 7 otherwise.

Proof. As a quadratic space, QL := Q ⊗ L can be decomposed by QL '
〈dL〉 ⊥ V for a quadratic space V with dV = 1. By the reciprocity law for
the Hasse symbol,

1 =
∏
p

Sp(QL) =
∏
p

(dL, dL)p · Sp(V ) =
∏
p

Sp(V ).

Therefore for at least one p, which we will call a core prime of L, Vp is
anisotropic by [[19],63.17]. Assume that p is odd. If εp = 0, then Lp '
〈1,−∆p, αp, p,−∆pp〉 by Lemma 2.3. Therefore the desired result follows. If
εp = 1, then Lp ' 〈1, 1, 1, ∆p, αp∆pp〉. Therefore the desired result follows
from Lemma 2.1 of [13]. Now assume that p = 2. Note that the Z2-lattice
K := 〈1, 1, 1, 1〉 cannot primitively represent all p-adic integers divisible by
8. Hence any sublattice of K with index 2d cannot primitively represent all
integers divisible by 22d+3. Let L′ be the orthogonal complement of 〈2ε2α2〉
in L2. Then clearly, L′ is a sublattice of K with index 2n, where n = 0, 1, 2.
Therefore the desired result follows.

Remark 2.5 If p = 2, the minimum possible value of k can be smaller than
7, depending on L.

Definition 2.6 Let L be a Z-lattice. A Z-lattice ` is called a core Z-lattice of
L if the failure of L to represent ` implies that L fails to represent infinitely
many Z-sublattices of `.
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If L is almost n-universal, then L must represent all n-ary core Z-lattices
of L.

Lemma 2.7 Let L be a locally 2-universal quinary Z-lattice. Then L always
has a binary core Z-lattice.

Proof. Under the same notations of Lemma 2.4, let ` = Zx+Zy be a binary
Z-lattice satisfying all conditions given there. Furthermore we may assume
that the matrix generated by the vectors x and y is sufficiently close to the
form appearing in Lemma 2.4 over Zp. For a positive integer n, assume that
`(n) := Zx+Z(pny) is represented by L. Let σ be it’s representation. Since
`(n) is not primitively represented by L, there exist integers a, b satisfying
gcd(a, b, p) = 1 such that aσ(x) + bσ(pny) = pz for a vector z ∈ L. Hence
a ≡ 0 (mod p) and σ(pny) is not a primitive vector in L. Therefore `(n−1)
is represented by L. From this follows the lemma.

Theorem 2.8 There exist only finitely many almost 2-universal Z-lattices
of rank 5.

Proof. Let L be a locally 2-universal quinary Z-lattice. We prove that if the
5-th successive minimum of L is sufficiently large, then L cannot represent
infinitely many binary Z-lattices. This implies the desired result by (2.1).
Assume that m5(L) is sufficiently large. Let p be a core prime of L defined
on Lemma 2.4.

Since L is 1-universal and m5(L) is sufficiently large, the primitive qua-
ternary sublattice, say L′, containing x1, x2, x3, x4 such that Q(xi) = mi(L)
must be 1-universal (see [3]). Note that L′ is isometric to one of the qua-
ternary 1-universal Z-lattices, which exist only finitely many. Therefore by
(2.1), there exist real numbers M,N independent of L such that MdL ≤
m5(L) ≤ NdL.

First assume that p is an odd prime. Since (L′)2 is not 2-universal (see
[10]), there exists a primitive binary Z2-lattice K (i.e., there does not exist
a binary Z2-lattice properly containing K), such that K 6−→ L2. Note that
either K represents a unit, say η, or is isometric to [2, 1, 2]. Let q be an
integer in {3, 11, 5, 13, 7, 23, 17, 41, 6, 22, 10, 26, 14, 46, 34, 82} such that
pq ∈ d(K)(Z∗2)2 and gcd(p, q) = 1.

Assume that εp = 0. Since Lp ' 〈1,−∆,αp, p,−∆pp〉, L′p is not unimod-
ular. Therefore p is bounded by some constant C because of the finiteness
of L′. Let a be a positive integer such that a < 8p and

a ≡ αp (mod p) and a ≡ η (mod 8) if 〈η〉 −→ K,
a ≡ 2αp (mod p) and a ≡ 1 (mod 2) if K ' [2, 1, 2] .

If 8C2q ≤ m5(L), then [a, 0, apq] or [2, 1, 2a], respectively to the condition
of K, is the core Z-lattice of L that is not represented by L.

Now assume that εp = 1. Let a be a positive integer such that a < 8p
and

a ≡ αp (mod p) and a ≡ ηp (mod 8) if 〈η〉 −→ K,
a ≡ 2αp (mod p) and a ≡ 1 (mod 2) if K ' [2, 1, 2] .
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If 16pmax(p, q) < MdL, then [ap, 0, aq] or [2p, p, 2ap] is the core Z-lattice
of L that is not represented by L. If MdL ≤ 16pmax(p, q), then m5(L) ≤
16Npmax(p,q)

M . Hence we may assume that p is sufficiently large. Since both
cases can be done in a similar manner, we only provide a proof of the case
when 〈η〉 −→ K.

Let Ω be the product of all primes not greater than (q+1)
M . Take an

integer a satisfying(
a

p

)
=

(
αpq

p

)
, a ≡ η (mod 8),

(pq
a

)
=

(
−1

a

)
and gcd(a,Ω) = 1.

Here (−) is the Jacobi symbol. Furthermore we can choose a such that

a < Cp
3
8+ε for a constant C and ε > 0 by Corollary 3.3 of [6]. We assume

that p is sufficiently large so that a ≤ p
1
2 ≤ Mp. We let ` = [a, b, c], where

b, c is positive integers such that 0 < b < a and pq = −b2 + ac. Note that
such integers always exist by the above conditions. Since a, c < Mp ≤ m5(L)
and `2 ' K, ` is the core Z-lattice of L that is not represented by L.

Lastly, assume that p = 2. If d(L′) is a square integer, then there exists
a bounded prime r such that L′r is anisotropic by a similar reasoning to
Lemma 2.4. If r is odd and r2 < m5(L), then for all positive integers s,
[r2, 1, s] is not represented by L, because r2 cannot be primitively repre-
sented by L. If r = 2 and 64 < m5(L), then [64, 1, s] cannot represented by
L by a similar reasoning to above and by Lemma 3 of [21]. Assume that
d(L′) is not a square integer and let r be a bounded odd prime such that
(L′)r is not universal. The existence of such a bounded prime r follows from
the finiteness of L′ up to isometry. Let M be a fixed binary Zr-lattice such
that M 6−→ (L′)r. Then there exists a Z-lattice ` such that `r 'M and ` is
isometric to the Z2-lattice given by Lemma 2.4 for fixed k. For all possible
`′s, if m2(`) < m5(L), then ` is a core Z-lattice that is not represented by
L. Therefore the theorem follows.

3 Almost n-universal diagonal Z-lattices of rank n + 3 (n ≥ 2)

In this section, we determine all candidates of almost n-universal diagonal
Z-lattices of rank n + 3 for n ≥ 2. Let L = 〈a, b, c, d, e〉 be a locally 2-
universal Z-lattice. We assume that 0 < a ≤ b ≤ c ≤ d ≤ e. To represent
binary Z-lattices of the form [1, 0, s1], [2, 1, s2] and [3, 1, s3], a = b = 1 and
c = 1 or 2. If c = 1 and d ≥ 4, then [4, 1, s4] 6−→ L. If c = 2 and d ≥ 6
then [6, 1, s5] 6−→ L. Therefore L contains one of the following quaternary
Z-lattices:

〈1, 1, 1, 1〉, 〈1, 1, 1, 2〉, 〈1, 1, 1, 3〉,
〈1, 1, 2, 2〉, 〈1, 1, 2, 3〉, 〈1, 1, 2, 4〉, 〈1, 1, 2, 5〉.

For each quinary Z-lattice L, if L is not almost 2-universal, we will give
a binary core Z-lattice that is not represented by L for most cases. We
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call such a Z-lattice an exceptional core Z-lattice of L. When 2 is a core
prime of L and ` is an exceptional core Z-lattice of L, then we always write
` = [a, b, c] if [a, b · 2m, c · 22m] is not represented by L. For a given odd core
prime p and an integer t, we write t ∼ 1 if t is a square in Z∗p and we write
t ∼ ∆, if t is a nonsquare unit in Z∗p. If we write [a, b, c] ' [a′, b′, c′] −→ Lp,
then it means [a, b, c] is isometric to [a′, b′, c′] over Zp and is represented
by L over Zp, i.e., whether [a, b, c] is defined on Z or Zp, it depends on the
notation of the right lattice.

Case 1 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 1, 1, e〉
If e = 1, 2, 3, then L(e) has class number 1 and is locally 2-universal.

Therefore L(e) is 2-universal Z-lattice by [[19], 102.5]. If e is even greater
than 3 then [4, 1, 2s] is not represented by L(e) for all s ≥ 2. If e ≥ 8
then [8, 1, s] is not represented by L(e) for all s ≥ 8. Clearly [3, 0, 5] '
[23, 10, 5] is not represented by L(7). We show that this binary Z-lattice is
an exceptional core Z-lattice of L(7). Assume that `(m) := [23, 10 · 2m, 5 ·
22m] −→ L(7). Then

`(s, t,m) : = [23− 7s2, 10 · 2m − 7st, 5 · 22m − 7t2]

=

(
23− 7s2 10 · 2m − 7st

10 · 2m − 7st 5 · 22m − 7t2

)
−→ L′,

for some integers s, t. Note that s = 0 or 1 and if s = 1 then t 6= 0 by
the positive definiteness of `(s, t,m). For all possible s, t, if we calculate
the discriminant of `(s, t,m), we can easily check that Q2`(s, t,m) is always
a hyperbolic space. This is a contradiction. Therefore L(7) is not almost
2-universal. In Theorem 3.1, we will prove that L(5) is, in fact, almost 2-
universal.

Case 2 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 2, 2, e〉
If L(e) is almost 2-universal, then 〈1, 1, 1, 1, e〉 is also almost 2-universal.

Therefore, by Case (1), it suffices to check only the cases when e = 3, 5.
Note that [2, 1, 2] is the only one exception of L(3) (see [9]). In Theorem
3.1, we will prove that L(5) is almost 2-universal.

Case 3 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 1, 2, e〉
Note that [2, 0, 7] ' [1, 0, 14] 6−→ (L′)2. We first consider the case when

2 is a core prime of L(e), i.e., e = 2k(8n± 1), where k = 1, 2, 3. Note that if
k ≥ 4, then L(e) is not locally 2-universal by Lemma 2.3. If e ≡ 1 (mod 8)
and e ≥ 28, then [2, 0, 28] is an exceptional core Z-lattice. If e = 9 or 25,
then L(e) is not locally 2-universal. If e = 17, then [18, 4, 4] is an exceptional
core Z-lattice of L(17). If e ≡ 7 (mod 8) and e ≥ 15, then [14, 0, 4] is an
exceptional core Z-lattice of L(e). In Theorem 3.2, we will prove that L(7) is
an almost 2-universal Z-lattice. If e = 2(8n+ 1), and e ≥ 57, then [4, 0, 56]
is an exceptional core Z-lattice of L(e). Note that L(2) is a 2-universal
Z-lattice with class number 1 and [9, 1, 25] is an exceptional core Z-lattice
of L(34). If e = 2(8n − 1), then [7, 0, 8] is an exceptional core Z-lattice of
L(e). If e = 4(8n + 1) and e ≥ 113, then [2, 0, 112] is an exceptional core
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Z-lattice. [18, 2, 50] is an exceptional core Z-lattice of L(68) and [3, 0, 3] is
the only one exception of L(4) (see [9]). If e = 4(8n−1), then [14, 0, 16] is an
exceptional core Z-lattice. If e is divisible by 8, then L(e) cannot represent
all binary Z-lattices of the form [2, 0, 8a+ 7].

Now we assume that 2 is not a core prime of L(e). Since there exists at
least one core prime of L(e), we can find an odd core prime p of L(e). Note
that p ≡ ±3 (mod 8) and e is divisible by p. Let e = pt.

(3.1) p ≡ 11 (mod 24). In this case, [2p, p, 2p] is always an exceptional
core Z-lattice of L(e).

(3.2) p ≡ 19 (mod 24). If t ∼ 1, then [12, 3, 3(p+1)
4 ] is an exceptional core

Z-lattice and if t ∼ ∆, [p, 0, p] is an exceptional core Z-lattice.

(3.3) p ≡ 5 (mod 24). Assume that t ∼ 1. If t ≥ 4, [6, 0, 3p] is an ex-
ceptional core Z-lattice. For the remaining case, since 2 ∼ 3 ∼ ∆, we may

assume that t = 1. If e ≥ 132, then [132, 33, 3(p+11)
4 ] is an exceptional core

Z-lattice of L(e). In the following, the right binary Z-lattice is an excep-
tional core Z-lattice of the left Z-lattice.

(∗) L(101) : [15, 3, 41], L(53) : [14, 2, 23], L(29) : [15, 6, 14].

Note that [3,0,3] is the only one exception of L(5) (see [9]). Assume that
t ∼ ∆. If t ≥ 3, then [p, 0, 2p] is an exceptional core Z-lattice. So we may

assume that t = 2. If e 6= 10, then [30, 15, 3(p+5)
2 ] is an exceptional core

Z-lattice. Note that [10, 5, 10] is an exceptional core Z-lattice of L(10).

(3.4) p ≡ 13 (mod 24). Assume that t ∼ 1. If e ≥ 456, then [456, 57, 3(p+19)
8 ]

is an exceptional core Z-lattice and if t ≥ 2, [6, 3, 3(p+1)
2 ] is also an excep-

tional core Z-lattice. Therefore it remains only the cases when e = 13, 37, 61,

109, 157, 181, 229, 277, 349, 373, 397, 421. If p ≡ 9 (mod 10), [30, 3, 3(p+1)
10 ]

is an exceptional core Z-lattice and if p ≡ 1 (mod 10), [30, 9, 3(p+9)
10 ] is an

exceptional core Z-lattice. For the other cases, similarly to (∗), we have:

L[397] : [21, 9, 174], L[373] : [33, 3, 102], L[277] : [33, 9, 78],
L[157] : [21, 6, 69], L[37] : [7, 3, 33], L[13] : [52, 13, 52].

Assume that t ∼ ∆. Then, similarly to the subcase (3.3), we may assume

that t = 2. If p ≥ 42, [84, 21, 3(p+7)
4 ] is an exceptional core Z-lattice. Note

that [14, 4, 17] is an exceptional core Z-lattice of L(74) and [13, 0, 91] is an
exceptional core Z-lattice of L(26).

(3.5) p = 3. If t ≥ 2, [3, 0, 3] is an exceptional core Z-lattice. L(3) is a
2-universal Z-lattice with class number 1.

Case 4 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 2, 4, e〉
Since L(e) is a sublattice of 〈1, 1, 1, 2, e〉, it suffices to check the cases

when e = 4, 5, 7. Note that L(4) is not locally 2-universal. [4, 1, 4] is an
exceptional core Z-lattice of L(5) and [14, 7, 14] is an exceptional core Z-
lattice of L(7).
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Case 5 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 1, 3, e〉
Note that [3, 0, 7] 6−→ (L′)2 and [1, 0, 6] 6−→ (L′)3. First, we consider the

case when 3 is a core prime of L(e), i.e., e ≡ 0, 2 (mod 3). If e ≡ 2 (mod 3)
and e ≥ 8, [1, 0, 6] is an exceptional core Z-lattice and [4, 1, 4] ' [6, 3, 4] is an
exceptional core Z-lattice of L(5). Note that [6, 3m+1, 4·32m] 6−→ L(5). If e ≡
0 (mod 3) and e ≥ 6, then [6, 3, 3a+1] 6−→ L(e). Note that [2, 1, 3] ' [7, 4, 3]
is an exceptional core Z-lattice of L(3), i.e., [7, 4 ·3m, 32m+1] 6−→ L(3). Now
we always assume that e ≡ 1 (mod 3).

Assume that 2 is a core prime of L(e), i.e., e is one of the following forms
4n+1, 4(4n+1) or 2(4n+3) for a non-negative integer n. If e ≡ 1 (mod 8),
then [3, 0, 28] is an exceptional core Z-lattice and if e ≡ 5 (mod 8), [7, 0, 12]
is an exceptional core Z-lattice. If e = 2(8n + 3) and n ≥ 2, [2, 0, 40] is an
exceptional core Z-lattice and [18, 2, 18] is an exceptional core Z-lattice of
L(22). If e = 2(8n + 7), then [10, 0, 8] is an exceptional core Z-lattice. If
e = 4(4n+ 1), then [2, 1, 4a+ 3] 6−→ L(e) for any non-negative integer a.

If 2 is not a core prime of L(e), then there exists a core prime p dividing
e such that p ≡ ±5 (mod 12). We let e = pt. We assume that t ∼ 1 in
(5.1) ∼ (5.3).

(5.1) p ≡ 5 (mod 12). If p ≡ 5 (mod 8), [3, 1, p+1
3 ] is an exceptional core

Z-lattice and if p ≡ 1 (mod 8) and e ≥ 39, [39, 13, p+13
3 ] is an exceptional

core Z-lattice. Lastly, [34, 17, 34] is an exceptional core Z-lattice of L(34).

(5.2) p ≡ 19 (mod 24). If t ≥ 2, [p, 0, p] is an exceptional core Z-lattice.
So we may assume that t = 1. Assume that 5 ∼ 1. If e ≥ 520, then

[520, 65, 5(p+13)
8 ] is an exceptional core Z-lattice. For the remaining cases,

we can easily check the following table similar to (T ).

L[499] : [13, 3, 231], L[379] : [13, 1, 175], L[331] : [10, 2, 199]
L[211] : [15, 3, 85], L[139] : [10, 4, 85], L[19] : [13, 4, 10].

Note that any binary Z-lattice ` such that `2 ' [5, 0, 10] and `3 ' [1, 0, 6]
with d` = 6p can be a core Z-lattice of L(e). This makes it easy to check the

above table. If 5 ∼ ∆ and e ≥ 330, then [330, 55, 5(p+11)
6 ] is an exceptional

core Z-lattice. For the remaining cases, we have the followings:

L[307] : [13, 2, 142], L[283] : [37, 2, 46], L[187] : [13, 3, 87]
L[163] : [7, 3, 141], L[67] : [13, 1, 31], L[43] : [7, 1, 37].

(5.3) p ≡ 7 (mod 24). Similarly to (5.2), we may assume that t = 1. If
e ≥ 66, [66, 11, p+11

6 ] is an exceptional core Z-lattice and [10, 2, 19] is an
exceptional core Z-lattice of L(31). L(7) is a candidate.

(5.4) t ∼ ∆. Note that t ≥ 2. If p ≡ 7 (mod 12), then [p, 0, p] is an
exceptional core Z-lattice and if p ≡ 5 (mod 12), [2p, p, 2p] is an exceptional
core Z-lattice of L(e).

Case 6 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 2, 3, e〉
Note that [1, 0, 10] ' [3, 0, 14] 6−→ (L′)2 and [2, 0, 6] 6−→ (L′)3. If e ≡ 1

(mod 3), then [2, 1, 2] is an exceptional core Z-lattice of L(e) with a core
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prime 3. If e ≡ 0 (mod 3) and e ≥ 6, then [6, 3, 3a + 2] 6−→ L(e) for any
non-negative integer a. Note that [2, 1, 2] is an exceptional core Z-lattice of
L(3). Now we always assume that e ≡ 2 (mod 3).

Assume that 2 ia a core prime of L(e), i.e., e = 22k(8n+5), 22k(8n+7),
22k+1(8n+ 1) or 22k+1(8n+ 3), where k = 0, 1. We give the following table
of an exceptional core Z-lattice of each right Z-lattice:

e ≡ 5 (mod 8), e ≥ 13 : [14, 0, 12], e ≡ 7 (mod 8) : [10, 0, 4],
e
2 ≡ 1 (mod 8) : [43, 2, 4], e

2 ≡ 3 (mod 8) : [9, 2, 12],
e
4 ≡ 5 (mod 8) : [14, 6, 14], e

4 ≡ 7 (mod 8) : [10, 0, 16],
e
8 ≡ 1 (mod 8), e ≥ 9 : [43, 4, 16], e

8 ≡ 3 (mod 8) : [41, 2, 4].

L(5) and L(8) are not yet determined whether they are almost 2-universal
or not.

If 2 is not a core prime of L(e), then there exists a core prime p 6= 2, 3
dividing e. Clearly p ≡ ±7,±11 (mod 24). We let e = pt.

(6.1) p ≡ 7 (mod 24). Since e ≡ 2 (mod 3), t 6= 1. Therefore [p, 0, p] is an
exceptional core Z-lattice of L(e).

(6.2) p ≡ 11 (mod 24). In this case, [2p, p, 2p] is always an exceptional
core Z-lattice.

(6.3) p ≡ 17 (mod 24). Note that 2 ∼ 1 and 3 ∼ ∆. If t ∼ ∆, [10, 0, p]
is an exceptional core Z-lattice. Assume that t ∼ 1. If t ≥ 4, [14, 0, 3p] is
an exceptional core Z-lattice. Hence we may assume that t = 1. If e 6= 17,
[30, 10, p+10

3 ] is an exceptional core Z-lattice. Since 3, 5, 7 are all nonsquare
units in Z∗17, [34, 17, 68] is an exceptional core Z-lattice of L(17).

(6.4) p ≡ 13 (mod 24). Note that 2 ∼ ∆ and 3 ∼ 1. Assume that t ∼ ∆. If
t ≥ 3, then [p, 0, 2p] is an exceptional core Z-lattice. Hence we may assume

that t = 2. If 7 ∼ 1 and e ≥ 308, [308, 77, 7(p+11)
4 ] is an exceptional core Z-

lattice of L(e). Note that [11, 2, 71] is an exceptional core Z-lattice of L(74)
and [109, 0, 1090] is an exceptional core Z-lattice of L(218). If 7 ∼ ∆ and

e ≥ 210, then [210, 35, 7(p+5)
6 ] is an exceptional core Z-lattice. Furthermore

[13, 0, 91] is an exceptional core Z-lattice of L(26) and [61, 0, 610] is an
exceptional core Z-lattice of L(122).

If t ∼ 1, then [6, 3, p+3
2 ] is an exceptional core Z-lattice of L(e).

Case 7 L(e) := L′ ⊥ 〈e〉 = 〈1, 1, 2, 5, e〉
Note that [2, 0, 3] ' [5, 0, 14] 6−→ (L′)2 and [1, 0, 10] 6−→ (L′)5. If e ≡ ±1

(mod 5), which implies that 5 is a core prime of L(e), [4, 1, 4] is an excep-
tional core Z-lattice of L(e). Note that [4, 1, 4] is represented by 〈1, 1, 2, 5〉
over all p-adic integers but it is not represented by 〈1, 1, 2, 5〉. This is pos-
sible for the fact that the class number of 〈1, 1, 2, 5〉 is 2 (see [17]). If e ≡ 0
(mod 5) and e ≥ 15, then [10, 0, 5a+ 1] 6−→ L(e). [2, 1, 4] is an exceptional
core Z-lattice of L(10) and [15, 0, 5a+ 1] 6−→ L(5). Now we always assume
that e ≡ ±2 (mod 5).
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Assume that 2 is a core prime of L(e), i.e., e = 22k(8n±3) or 22k+1(8n±
1), where k = 0, 1. Similarly to Case (6), we have the following table:

e ≡ 3 (mod 8) : [14, 0, 20], e ≡ 5 (mod 8) : [2, 0, 12],
e
2 ≡ 1 (mod 8) : [5, 1, 5], e

2 ≡ 7 (mod 8) : [3, 0, 8],
e
4 ≡ 3 (mod 8) : [14, 4, 4], e

4 ≡ 5 (mod 8) : [2, 0, 48],
e ≡ 0 (mod 8) : [2, 0, 8a+ 3] 6−→ L(e).

We consider the remaining case. Let p 6= 2, 5 be a core prime of L(e). Note
that p ≡ ±7,±11,±17,±19 (mod 40). Since p divides e, we let e = pt.

(7.1) p ≡ 11, 19 (mod 40). Since t 6= 1, [p, 0, p] is an exceptional core
Z-lattice of L(e).

(7.2) p ≡ 7 (mod 40). If t ∼ ∆, [2p, 0, 5] is an exceptional core Z-lattice.
Assume that t ∼ 1. Then we may assume that t = 1 by a similar reasoning

to (7.1). If 7 ∼ 1 and e ≥ 210, then [210, 21, 7(p+3)
10 ] is an exceptional core

Z-lattice. Furthermore [27, 4, 18] is an exceptional core Z-lattice of L(47)
and [44, 1, 19] is an exceptional core Z-lattice of L(167). If 7 ∼ ∆, then

[56, 7, 7(p+1)
8 ] is an exceptional core Z-lattice of L(e). Since [14, 7, 14] is not

represented by L, it is an exceptional core Z-lattice of L(7).

(7.3) p ≡ 17 (mod 40). Note that 2 ∼ 1 and 5 ∼ ∆. If t ∼ ∆, then
[2p, 0, 3] is an exceptional core Z-lattice. Assume that t ∼ 1. If e ≥ 190,
then [190, 38, p+38

5 ] is an exceptional core Z-lattice. If t ≥ 6, [5p, 0, 14] is an
exceptional core Z-lattice. Therefore we may assume that t = 1 or 4. For
the remaining cases, we have:

L(17), L(68) : [34, 17, 68], L(97) : [9, 1, 54], L(137) : [14, 1, 49].

(7.4) p ≡ 21 (mod 40). If t ∼ ∆, [p, 0, 14] is an exceptional core Z-lattice
and if t ∼ 1, then t ≥ 3 and hence [p, 0, 2p] is an exceptional core Z-lattice.

(7.5) p ≡ 23 (mod 40). If t ∼ ∆, [2p, 0, 5] is an exceptional core Z-lattice.
Assume that t ∼ 1. If t ≥ 6, [5p, 0, 1] is an exceptional core Z-lattice. So
we may assume that t = 1 or 4. If e ≥ 210, [210, 42, p+42

5 ] is an exceptional
core Z-lattice. For the remaining cases, we have:

L(23), L(92) : [13, 2, 18], L(143) : [18, 8, 83], L(103) : [13, 6, 82].

(7.6) p ≡ 29 (mod 40). If t ∼ ∆, [p, 0, 10] is an exceptional core Z-lattice
and if t ∼ 1, [p, 0, 2p] is an exceptional core Z-lattice.

(7.7) p ≡ 33 (mod 40). If t ∼ ∆, [2p, 0, 3] is an exceptional core Z-lattice.
Assume that t ∼ 1. Then we may assume that t = 1 or 4 by a similar
reasoning to the subcase (7.5). If e ≥ 110, [110, 22, p+22

5 ] is an exceptional
core Z-lattice. Lastly, [13, 2, 34] is an exceptional core Z-lattice of L(73).

Theorem 3.1 The following left quinary Z-lattices represent all binary Z-
lattices except the following right ones:

Quinary Z-lattices : Exceptional binary Z-lattices
L := 〈1, 1, 2, 2, 5〉 : [2, 1, 2], [2, 1, 4], [4, 1, 4], [8, 1, 8],
〈1, 1, 1, 1, 5〉 : [2, 1, 4], [4, 1, 4], [8, 1, 8].
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Proof. Since the first quinary Z-lattice is the sublattice of the second one,
it suffices only to prove the first case. Note that K := 〈1, 1, 2, 2〉 has class
number one. Let ` := [a, b, c] be a Minkowski reduced binary Z-lattice. We
assume that ` is 2-primitive Z-lattice, i.e., every Z2-lattice on Q2` containing
`2 is isometric to `2. If `2 6' [2, 1, 2] and if Q2` is not a hyperbolic space,
then ` −→ K. First assume that `2 ' [2, 1, 2]. If c ≥ 7, [a, b, c − 5] −→ K.
Therefore [2, 1, 2] is the only one exception of this case. Now assume that
Q2` is a hyperbolic space. By a direct calculation, we can easily check that
at least one of the following Z-lattices

[a− 5, b, c], [a, b, c− 5], [a− 5, b− 5, c− 5]

is neither isometric to [2, 1, 2] over Z2 nor hyperbolic space over Q2. If
a ≥ 14, all of Z-lattices given above are positive definite and hence ` −→
〈1, 1, 2, 2, 5〉. Now we assume that a ≤ 13. Since the other cases can be done
in a similar manner, we consider only a = 2, 4, 8. Assume that a = 2. Since
Q2` is hyperbolic and `2 is primitive, b = 1 and c ≡ 0 (mod 4). Therefore
if c ≥ 8, [2, 1, c − 5] −→ K and hence ` −→ L. Clearly [2, 1, 4] is not
represented by L. If a = 4, then b = 1 and c ≡ 0 (mod 2) by a similar
reasoning to above. If c ≥ 6, [a, b, c− 5] −→ K and hence ` −→ L. [4, 1, 4] is
an exception. If a = 8, then b must be 1 or 3. Hence if c ≥ 11, at least one
of the [3, b, c], [3, b − 5, c − 5] is represented by K, which implies ` −→ L.
For the remaining cases, we can easily check that L represents all except
[8, 1, 8] by a direct calculation. Assume that ` is not 2-primitive. It suffices
to check the case when ` is a sublattice of one of the exceptional Z-lattices
with even index, which is given above. The all sublattices with index 2 of
the [2, 1, 2], [2, 1, 4], [4, 1, 4], [8, 1, 8] are

[2, 0, 6], [4, 2, 8], [2, 0, 14], [4, 2, 16], [6, 0, 10], [8, 2, 32], [14, 0, 18].

One can easily check that these are all represented by L by a direct calcu-
lation. Therefore the desired result follows.

Theorem 3.2 The quinary Z-lattice L := 〈1, 1, 1, 2, 7〉 represents all binary
Z-lattices except [3, 0, 3], [6, 0, 6].

Proof. Note that the quaternary sublattice K := 〈1, 1, 1, 2〉 of L has class
number 1. Let ` := [a, b, c] be a Minkowski reduced binary 2-primitive Z-
lattice. The idea of the proof is similar to that of [11]. So we provide only a
sketch of the proof. Note that

`p −→ Kp if

 p ≡ ±1 (mod 8) or
p ≡ ±3 (mod 8) and gcd(p, a, b, c) = 1 or
p = 2 and `2 6' [2, 0, 7] ' [1, 0, 14].

In particular, if `2 is unimodular, then `2 −→ K2. We let

`s(t) := [a− 7t2, sa+ b, s2a+ 2sb+ c] =

(
a− 7t2 sa+ b
sa+ b s2a+ 2sb+ c

)
.
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If `s(t) −→ K, then ` −→ L. Note that det(`s(t)) = ac − b2 − 7t2(s2a +

2sb+ c). If 3a− 28t2(s2 +
|s|+ s

2
+ 1) > 0 and a > 7t2, then we can easily

check that `s(t) is positive definite from the fact that [a, b, c] is Minkowski
reduced. Let P = {3, 5, 11, 13, 19, 29, 37 . . . } be the set of primes p such that
p ≡ ±3 (mod 8).

Case (1) a ≡ 2, 4 (mod 8). For any integer s, (`s(1))2 −→ K2. Let
p1, p2, . . . , pk be the primes in P dividing a−7. Note that a−7 ≥ p1p2 · · · pk.
If k = 0 and a ≥ 10, then `0(1) −→ K. Assume that a = 2. If b = 0, the
desired representation follows from the fact that 〈1, 1, 1, 7〉 is 1-universal. If
b = 1, [2, 1, c] −→ K. Since ` is 2-primitive, if a = 4, then b = 1. Clearly
[4, 1, c] −→ K. If k = 1 and a ≥ 19, then `0(1) or `−1(1) is represented by K.
For a = 10, 12, 18, we can easily show that ` −→ L by a direct calculation.
If 2 ≤ k ≤ 5, for at least one integer s in {−k + 1, . . . ,−1, 0, 1, . . . , k − 1},
`s(1) −→ K. If k = 6, for at least one integer s in {−7,−6, . . . , 6, 7},
`s(1) −→ K. If k ≥ 7, for at least one integer s in {−k2k−1,−k2k−1 +
1, . . . , 0, 1, . . . , k2k−1}, `s(1) −→ K by Lemma 3 of [10].

Case (2) a ≡ 0 (mod 8). For any integer s, (`s(2))2 −→ K2. All other
things are similar to above case. In this case, it suffices to check only the
cases when a = 8, 16, 24, 32, 40, 48, 72, 88 by a direct calculation.

Case (3) a ≡ 6 (mod 8). If b ≡ 0 (mod 2), then c ≡ 1 (mod 2) by a 2-
primitiveness assumption of `. Therefore (`s(1))2 −→ K2. If b ≡ 1 (mod 2),
then (`s(2))2 −→ K2. All other things are similar to Case (1).

Case (4) a ≡ 1 (mod 2). If b ≡ 0 (mod 2), (`s(1))2 −→ K2 for all odd
integers s and if b ≡ 1 (mod 2), (`s(1))2 −→ K2 for all even integers s.
Since all other things are similar to Case (1), we consider only a = 3. Since
[3, b, c] −→ K2, it suffices to check only the case when b = 0 and c ≡ 0
(mod 3). If c ≥ 8, then [3, 0, c − 7] −→ K and [3, 0, 6] −→ K. Therefore
[3, 0, 3] is the only one exception.

Lastly, we must check the representation of the sublattices [3, 0, 3] with
even index by L. Let `′ be such a lattice. Since only [3, 0, 12], [6, 0, 6] are
all sublattices of [3, 0, 3] with index 2 and [3, 0, 12] −→ L, we may assume
that `′ −→ [6, 0, 6]. If `′ has an even index in [6, 0, 6], then `′ −→ [6, 0, 24]
or `′ −→ [12, 0, 12]. Therefore `′ −→ L. Assume that `′ := [6a, 6b, 6c] be a
sublattice of [6, 0, 6] with an odd index. Then ac−b2 must be an odd square
integer. We define

`′s(t) = [6a−7t2, 6as+6b, 6as2 +12sb+6c] =

(
6a− 7t2 6as+ 6b
6as+ 6b 6as2 + 12sb+ 6c

)
.

If a ≡ 0 (mod 2), then a ≡ 2 (mod 4). Therefore (`′s(1))2 −→ K2. If a ≡ 1
(mod 2), ord2(det(`′s(2))) = 2. Therefore (`′s(2))2 −→ K2. By a similar
calculation to Case (1), we can easily check the desired representation for
all cases.
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To sum up all, we get the following theorem:

Theorem 3.3 The all quinary diagonal almost 2-universal Z-lattices and
its exceptions are the followings:

(1) 2-universal Z-lattices

〈1, 1, 1, 1, a〉 a = 1, 2, 3, 〈1, 1, 1, 2, b〉 b = 2, 3.

(2) Almost 2-universal Z-lattices and its exceptions

〈1, 1, 1, 2, 4〉 : [3, 0, 3], 〈1, 1, 1, 1, 5〉 : [2, 1, 4], [4, 1, 4], [8, 1, 8],
〈1, 1, 1, 2, 5〉 : [3, 0, 3], 〈1, 1, 1, 2, 7〉 : [3, 0, 3], [6, 0, 6],
〈1, 1, 2, 2, 3〉 : [2, 1, 2], 〈1, 1, 2, 2, 5〉 : [2, 1, 2], [2, 1, 4], [4, 1, 4], [8, 1, 8].

(3) Candidates

〈1, 1, 1, 3, 7〉, 〈1, 1, 2, 3, 5〉, 〈1, 1, 2, 3, 8〉.

Corollary 3.4 For n ≥ 3, The all diagonal almost n-universal Z-lattices of
rank n+ 3 are, in fact, n-universal except only 〈1, 1, 1, 1, 1, 2, 2〉. They are:

(1) n = 3

〈1, 1, 1, 1, 1, a〉, a = 1, 2, 3, 〈1, 1, 1, 1, 2, b〉 b = 2, 3.

(2) n = 4

〈1, 1, 1, 1, 1, 1, 1〉, 〈1, 1, 1, 1, 1, 1, 2〉, 〈1, 1, 1, 1, 1, 2, 2〉 : Candidate .

(3) n = 5

〈1, 1, 1, 1, 1, 1, 1, 1〉 〈1, 1, 1, 1, 1, 1, 1, 2〉.

Proof. The universality of the above Z-lattices are given by [10]. Let L be
a diagonal almost 3-universal Z-lattice of rank 6. Then L ' 〈1〉⊥L′, where
L′ is the almost 2-universal quinary Z-lattice. Among them, 〈1, 1, 1, 1, 2, 4〉
and 〈1, 1, 1, 2, 3, 8〉 are not locally 3-universal. Since 〈2〉⊥ in L is also almost
2-universal, L cannot be

〈1, 1, 1, 1, 2, 7〉, 〈1, 1, 1, 1, 3, 7〉 and 〈1, 1, 1, 2, 3, 5〉.

Furthermore one can easily check that 5 2 2m

2 5 −2m

2m −2m 22m

 6−→ 〈1, 1, 1, 1, 1, 5〉,



The representation of quadratic forms 15

for all non-negative integers m and hence 〈1, 1, 1, 2, 2, 5〉 is not almost 3-
universal. Finally, we can easily check that

[4, 1, 4]⊥〈2 · 52m〉 6−→ 〈1, 1, 1, 1, 2, 5〉, [2, 1, 2]⊥〈32m〉 6−→ 〈1, 1, 1, 2, 2, 3〉.

Since there are 5 diagonal almost 3-universal Z-lattices of rank 6, we have 5
candidates of diagonal almost 4-universal Z-lattices of rank 7. Since [2, 1, 2]⊥

in 〈1, 1, 1, 1, 1, 1, 3〉 or in 〈1, 1, 1, 1, 1, 2, 3〉 is not almost 2-universal, both Z-
lattices are not almost 4-universal. 〈1, 1, 1, 1, 1, 2, 2〉 is a candidate. Note
that [2, 1, 2] ⊥ [2, 1, 2] is not represented by 〈1, 1, 1, 1, 1, 2, 2〉 and

[2, 1, 2]⊥[2, 1, 2]⊥〈32m〉 6−→ 〈1, 1, 1, 1, 1, 1, 2, 2〉.

Remark 3.5 Let L be an almost 6-universal Z-lattice and let Ik be the Z-
lattice generated by the vectors of quadratic norm 1 of rank k. Since I5 −→
L, L ' In⊥L′, where 〈1〉 6−→ L′ and n ≥ 5. For n ≥ 2, since D5(16n −
20)[1 1

4 ] (for the notation, see [4]) is not represented by Ik for all k, at
least one of the Z-lattices of the form D5(16n− 20)[1 1

4 ] must be represented
by L′. Under this restriction, if the rank of L is 11, then for all n ≥ 1,
A5(36n−30)[1 1

6 ] is not represented by L. Therefore the rank of L is greater
than 11.

If we define auZ(n) to be the minimal rank of an almost n-universal
Z-lattice, then auZ(n) ≥ uZ(n − 1) (for the definition, see [10]). Therefore
auZ(n) grows very quickly.
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