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Abstract. In this article, Conway-Schneeberger’s and Bhargava’s results on
representability of positive integers by positive definite integral quadratric
forms are fully generalized as follows : for any infinite set S of positive definite
integral quadratic forms of bounded rank, there is a finite subset S0 of S such
that any positive definite integral quadratic form that represents every element
of S0 represents all elements of S.

1. Introduction

Representation theory of quadratic forms boasts a long and splendid history since
Pythagoras. For example, positive integers that are representable by sums of two,
three, and four squares were determined by great names like Fermat-Euler, Gauss,
and Lagrange, respectively. Hilbert [7] paid a tribute to this fascinating subject
by posting two problems among his famous 23 problems for the 20th century - the
11th to quadratic forms over number fields and their integer rings, and the 17th to
sums of squares over rational function fields.

Recall Lagrange’s four square theorem, which states : the integral quadratic form
x2+y2+z2+u2 represents all positive integers. This celebrated statement had been
generalized in many different directions such as Waring’s problem and Pythagoras
numbers, to name a few. One interesting generalization was made by Ramanujan
[26] in the early 20th century, who found and listed all 55 positive definite integral
quaternary diagonal quadratic forms, up to equivalence, that represent all positive
integers. Dickson [4] called such forms universal and confirmed Ramanujan’s list
except one form from the list that was not universal. Later, Willerding [28] added
124 quaternary non-diagonal universal forms to the list, up to equivalence, and
claimed that the list is complete. It is not hard to show that ‘quaternary’ is the
best possible in the sense that there is no ternary universal form. Throughout this
paper, by integral quadratic forms we mean classic ones, that is, quadratic forms
with integer coefficients such that coefficients of non-diagonal terms are multiples
of 2.

In 1930, Mordell [20] proved the five square theorem, which states : the integral
quadratic form x2 + y2 + z2 + u2 + v2 represents all positive definite integral binary
quadratic forms. (There is a very interesting new direction of generalizing La-
grange’s four square theorem, called the quadratic Waring’s problem [21], [12]. See
[14-17] for recent development in this direction.) Such a form is called 2-universal.
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Recently, all quinary 2-universal forms were determined by the authors [13]. For
positive integers k, 3 ≤ k ≤ 10, k-universal forms were also investigated in [13]
and [22]. In 1941, Maass [18] proved the three square theorem, which states : the
integral quadratic form x2 + y2 + z2 is universal over Q(

√
5 ), i.e., it represents all

totally positive integers over the ring of integers of Q(
√

5 ). All positive definite
integral ternary universal forms over real quadratic fields were determined in [3].
For further development on universal forms over number fields, see [9-11] and [6].

In 1997, Conway and Schneeberger announced so called the fifteen theorem,
which characterizes the (1-)universality by the representability of a finite set of
numbers, namely, 1, 2, 3, 5, 6, 7, 10, 14, and 15 (see [27]). Using this criterion,
they corrected several mistakes in the Willerding’s list and announced the new and
complete list of the 204 quaternary universal forms, up to equivalence. This result
was so stunning and beautiful that it was introduced in the Notices of American
Mathematical Society [5]. It shed new light in the global theory of representations
of quadratic forms. Motivated by the 15-Theorem, the authors proved 2-universal
and 8-universal analogies in [13] and [22]. Then came Bhargava’s generalization [2].
It was announced that he proved : for any infinite set S of positive integers there is
a finite subset S0 of S such that any positive definite integral quadratic form that
represents every element of S0 represents all elements of S. As a byproduct, he
found S0 for some interesting sets S, for example, the set of all primes, the set of
all positive odd integers, and so on.1

In this article, we generalize Conway-Schneeberger’s and Bhargava’s results as
follows : for any infinite set S of positive definite integral quadratic forms of bounded
rank, there is a finite subset S0 of S such that any positive definite integral quadratic
form that represents every element of S0 represents all of S.

We adopt lattice theoretic language. A Z-lattice L is a finitely generated free
Z-module equipped with a non-degenerate symmetric bilinear form B such that
B(L,L) ⊆ Z. The corresponding quadratic map is denoted by Q. Note that Z-
lattices naturally correspond to integral quadratic forms.

For a Z-lattice L = Zx1 + Zx2 + · · · + Zxn where {x1,x2, . . . ,xn } is a fixed
basis, we write

L ∼= (B(xi,xj)).

The right hand side matrix is called a matrix presentation of L. For Z-sublattices
L1, L2 of L, we write L = L1 ⊥ L2 when L = L1 ⊕ L2 and B(v1,v2) = 0 for
all v1 ∈ L1,v2 ∈ L2. If L admits an orthogonal basis {x1,x2, . . . ,xn}, we call L
diagonal and simply write

L ∼= 〈Q(x1), Q(x2), . . . , Q(xn)〉.
We call L non-diagonal otherwise. L is called positive definite or simply positive if
Q(v) > 0 for any v ∈ L,v 6= 0. We call Q(v) the norm of v. In this article, we
assume that

Every Z-lattice is positive definite
unless stated otherwise. The ideal of Z generated by B(L,L) is called the scale of
L, denoted by s(L). As usual, dL = det(B(xi,xj)) is called the discriminant of

1In recent private communication with Bhargava, the authors learned that he also obtained
the same result as ours. But unfortunately we haven’t seen his proof yet.
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L. For any Z-lattice (or Zp-lattice) L and m ∈ Z (or m ∈ Zp) ,
√

mL denotes the
Z-lattice (Zp-lattice, respectively) obtained from scaling L by m.

We define RL := R ⊗ L for any ring R containing Z. If {x1,x2, . . . ,xn} is an
orthogonal basis of the quadratic space V = QL or QpL, we write

V ∼= (Q(x1), Q(x2), . . . , Q(xn))

for convenience.
Let `, L be Z-lattices. We say that L represents ` and write ` → L if there is

an injective Z-linear map σ from ` into L preserving norms. Such σ is called a
representation.

A positive Z-lattice L is called n-universal if L represents all n-ary positive Z-
lattices `. So, Lagrange’s four square theorem is precisely the 1-universality of
I4
∼= 〈1, 1, 1, 1〉 and each of Ramanujan’s forms above corresponds to a 1-universal

quaternary diagonal Z-lattice. Furthermore, Mordell’s five square theorem is noth-
ing but the 2-universality of I5. It is well known that In is (n − 3)-universal if
4 ≤ n ≤ 8 (see [13] for example). For a given set S of Z-lattices, a Z-lattice L
is called S-universal if L represents all Z-lattices in S. For any unexplained ter-
minology and basic facts about Z-lattices, we refer the readers to O’Meara’s book
[23].

2. Lemmas

Let S = {`1, `2, . . . , `t, . . . } be an infinite set of Z-lattices of rank n. For each
` ∈ S, we fix a Minkowski reduced basis {x1(`),x2(`), . . . ,xn(`)} of `. We define

`(i) := Zxi(`) + Zxi+1(`) + · · ·+ Zxn(`)

for i = 1, 2, . . . , n. Note that {xi(`),xi+1(`), . . . ,xn(`)} is also a Minkowski reduced
basis of `(i) and

|B(xi(`),xj(`))| ≤ B(xi(`),xi(`)) = min(`(i))

for all i ≤ j. For any Z-lattice L, we define `L as follows:

`L :=

{
`j if `i → L for all i < j and `j 6→ L,

0 if such an j does not exist.

We inductively define Ti’s as follows: Let T1 be the set of all Z-lattices of rank n
that represent `1. For i ≥ 1, let

Ui := {L ∈ Ti | `L 6= 0},
and for each L ∈ Ui let U(L) be the set of Z-lattices M satisfying the following two
conditions:

(1) M represents L and `L,
(2) No sublattice of M of rank less than rank(M) can represent both L

and `L.

Then define
Ti+1 :=

⋃

L∈Ui

U(L).

Note that rank(M) ≤ n+rank(L).
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Lemma 2.1. Let S(p) be an infinite set of Zp-lattices of rank n. Then there exists
a finite subset S0(p) of S(p) such that any Zp-lattice that represents every element
of S0(p) represents all of S(p).

Proof. The proof is almost identical to that of Lemma 1.5 of [8]. ¤

Lemma 2.2. Let L be a Zp-lattice of rank N ≥ 4n + 12 and m be any integer
not less than m0(L) := ordp(s(Lk)), where Lk is the last component of a Jordan
decomposition of L. Then for any α ∈ Zp,

√
αpmIn+3 → K over Zp for any

primitive sublattice K of L with rank(K) ≥ N − n.

Proof. Let K = K0 ⊥ K1 ⊥ · · · ⊥ Kt be a Jordan decomposition of K with
s(Ki) = piZp or Ki = 0. Let

K− := K0 ⊥ K1 ⊥ · · · ⊥ Km0 , K+ := Km0+1 ⊥ Km0+2 ⊥ · · · ⊥ Kt,

and r = rank(K+). Since K is a primitive sublattice of L, we may choose a basis
{x1,x2, . . . ,xN} of L extending a basis of K. The rank of the matrix (B(xi,xj))
over Z/pm0+1Z is exactly N . From this we obtain 2r ≤ N . Therefore rank(K−) ≥
n + 6, which implies the lemma by Theorem 1 and Theorem 3 of [24]. ¤

Lemma 2.3. Let L be a Z-lattice of rank N ≥ 4n+12. For any Z-lattice ` of rank
n and M representing both ` and L, there is an integer q depending only on L for
which

√
qIn+3 → σ(`)⊥(M) over Zp for every prime p, where σ : ` → M is the

representation and σ(`)⊥(M) is the orthogonal complement of σ(`) in M .

Proof. Without loss of generality, we may assume that `, L ⊂ M . Let

` = Zx1 + Zx2 + · · ·+ Zxn,

and write xi = yi + zi, where yi ∈ QL and zi ∈ QL⊥(M). Choose an integer d
such that dyi ∈ L for all i and define

˜̀ := Zdy1 + · · ·+ Zdyn ⊂ L.

Then ˜̀⊥(L) is a primitive sublattice of L and ˜̀⊥(L) ⊂ `⊥(M). Let

q = q(L) :=
∏

p : prime

pm0(p),

where m0(p) is the p-order of the scale of the last component of a Jordan decom-
position of Lp for each prime p. Since m0(p) = 0 for almost all primes p, q is well
defined. The lemma then follows from Lemma 2.2. ¤

Lemma 2.4. The set Ti is finite for every i = 1, 2, 3, . . . . Furthermore, every
Z-lattice in Ti represents `j for all j ≤ i.

Proof. For any Z-lattice A of rank a, denote the a-th, i.e., the last, successive
minimum of A by µ(A). T1 is clearly finite. For i ≥ 2, let L ∈ Ui−1 and M ∈ U(L).
Suppose that µ(M) > max(µ(`L), µ(L)). Let K be the sublattice of M generated
by the vectors x ∈ M with Q(x) < µ(M) and K̃ := QK ∩ M . Then K̃ is a
sublattice with rank less than rank(M) and represents both L and `L, which is a
contradiction. So the last successive minimum of M is bounded above. From this
follows the first assertion. The second assertion is trivial from the definition of
U(L). ¤



A finiteness theorem for representability of quadratic forms by forms 5

3. Main Results and Applications

We are now ready to prove our main results.

Proposition 3.1. Assume that there exists an r such that every Z-lattice in Tr is
S-universal. Let

S0 := {`1} ∪
{

`L : L ∈
r−1⋃

i=1

Ui

}
.

Then every S0-universal Z-lattice is S-universal.

Proof. Let M be any Z-lattice that represents all Z-lattices in S0. If K → M for
some K ∈ ⋃r−1

i=1 (Ti − Ui), then M is S-universal. Therefore we may assume that
K 6→ M for any K ∈ ⋃r−1

i=1 (Ti − Ui). Then for all 1 ≤ j ≤ r − 1, we can find
Z-sublattices Mj of M such that Mj ∈ Uj and Mj ⊆ Mj+1 (1 ≤ j ≤ r − 2). Since
Mr−1 ∈ Ur−1 and `Mr−1 → M , there exists at least one Z-lattice in Tr that is
represented by M . ¤

Proposition 3.2. There is an integer r satisfying the condition of Proposition 3.1.

Proof. Suppose that such an r does not exist. Let s be the smallest integer such
that the ranks of all lattices in Ts are greater than n + 3 and P be the finite set of
all primes p for which Lp is not unimodular for some L ∈ Ts. By applying Lemma
2.1 for each prime in P , we may choose an integer s1 ≥ s such that every Z-lattice
L ∈ Ts1 represents all ` ∈ S over Zp for every prime p. Without loss of generality,
we may further assume that rank(L) ≥ 4n + 12 for all L ∈ Ts1 . Then by Theorem
2.1 of [8], there exists an integer c1 such that every Z-lattice M ∈ Ts1 represents
all ` ∈ S provided that B(x1(`),x1(`)) = min(`) ≥ c1. For each Z-lattice L ∈ Ts1 ,
let q(L) be the integer satisfying Lemma 2.3 and let

q :=
∏

L∈Ts1

q(L).

Let 1 ≤ i ≤ n−1. Assume that there exist ci ≥ c1 and si such that every Z-lattices
in Tsi represents all ` ∈ S provided that B(xi(`),xi(`)) = min `(i) ≥ ci. So, if
we let Si be the subset of S consisting of all Z-lattices that are not represented
by some Z-lattices in Tsi , then for every ` ∈ Si, |B(xj(`),xk(`))| ≤ ci for all
1 ≤ j ≤ i, 1 ≤ k ≤ n. Let Mi×n be the set of all i×n matrices (cjk) with |cjk| ≤ ci.
For C = (cjk) ∈ Mi×n, let Si(C) be the subset of Si consisting of all Z-lattices `
satisfying B(xj(`),xk(`)) = cjk for all 1 ≤ j ≤ i, 1 ≤ k ≤ n. For two `, `′ ∈ Si(C),
define ` ∼ `′ by

B(xj(`),xk(`)) ≡ B(xj(`′),xk(`′)) (mod q).

for all i+1 ≤ j ≤ n, i+1 ≤ k ≤ n. This is an equivalence relation. If we let S∗i (C)
be a complete set of representatives for the equivalence classes in Si(C), then S∗i (C)
is a finite subset of Si(C). Define

Wi :=
⋃

C∈Mi×n

S∗i (C)

and let si+1 ≥ si be an integer such that every Z-lattice in Tsi+1 represents all
Z-lattices in Wi. Such an integer always exists by Lemma 2.4. Then there exists
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an integer ci+1 ≥ ci such that for every L ∈ Tsi+1 , L represents all Z-lattices ` ∈ S
provided that

min(`(i + 1)) = B(xi+1(`),xi+1(`)) ≥ ci+1

by Theorem 2.1 of [8] and Lemma 2.3. In this manner, we obtain cn and sn so that
every Z-lattice in Tsn represents all Z-lattices ` ∈ S provided that

min(`(n)) = µ(`) ≥ cn,

which implies that every Z-lattice in Tsn
represents almost all Z-lattices of S. This

is a contradiction. ¤
Theorem 3.3. Let S be an infinite set of Z-lattices of a given rank. Then there
exists a finite subset S0 of S such that every S0-universal Z-lattice is S-universal.

Proof. The theorem follows immediately from Propositions 3.1 and 3.2. ¤

An S-universal Z-lattice L is said to be new if it does not contain a sublattice of
lower rank that is also S-universal and old, otherwise.

Corollary 3.4. Let S be an infinite set of Z-lattices of rank n. Then there exist
positive integers N1(S), N2(S) such that

(1) there is no S-universal Z-lattice of rank less than N1(S) and
(2) there is no new S-universal Z-lattice of rank greater than N2(S).

In particular, the total number of isometry classes of new S-universal Z-lattices is
finite.

Proof. This follows immediately from the construction of Ti’s and the proof of
Proposition 3.2. ¤

Let Pn denote the set of all Z-lattices of rank n. It is known that N1(P1) = 4,
N2(P1) = 5 and N1(P2) = N2(P2) = 5 (see [1], [13]). The values of N1(Pn) are
known ([13], [22]) for small n’s, for example, N1(Pn) = n + 3 for 1 ≤ n ≤ 5, and

N1(P6) = 13, N1(P7) = 15, N1(P8) = 16, N1(P9) = 28, N1(P10) = 30.

Define

Γ(S) := {S0 ⊂ S : every S0-universal Z-lattice is S-universal } .

The fifteen theorem asserts that S0 = { 1, 2, 3, 5, 6, 7, 10, 14, 15 } is a unique minimal
set in Γ(P1). The uniqueness of a minimal S0, however, is not guaranteed in general
when n 6= 1. For example, if we let S = { 〈2i, 2j , 2k〉 : i, j, k ≥ 0 }, then

S0 = { 〈1, 1, 1〉, 〈1, 1, 2〉 } and S′0 = { 〈1, 1, 1〉, 〈2, 2, 2〉 }
are both minimal in Γ(S). The following two questions seem to be quite interesting
but difficult :

(1) For which S is there a unique minimal S0 ∈ Γ(S) ?
(2) Is |S0| = γ(S) for every minimal S0 ∈ Γ(S) ? If not, when ?

where γ(S) := min{ |S0| : S0 ∈ Γ(S) }, which is finite by Theorem 3.3.

Remark. The authors expect Theorem 3.3 and Corollary 3.4 hold for totally
positive OF -lattices, where F is any totally real number field because all ingredients
(reduction theory, local and global theory, and Hsia-Kitaoka-Kneser theorem, etc...)
in the proofs are available over totally real number fields.
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