
Vector 1, historical background

Chong-Kyu Han

January 24, 2010

Chong-Kyu Han (February 23rd, 2010) January 24, 2010 1 / 10



Vector, Scalar

Scalar← scale magnitude
field: +,−,×,÷

e.g. R, C

Vector← vectus← vehere magnitude and direction
+,−, scalar multiplication

C, H
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basis of vector spaces

basis
dimension
e.g. Rn

additional operations:

dot product=inner product, A · B

cross product A× B
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Newtonian mechanics

17C

Isaac Newton (1643-1727)

Work W = F · S
Torque T = L× F
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vector fields

19C, 20C
Electro magnetism
Gradient, Divergence, Curl

James Clerk Maxwell (1831-1879)
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Maxwell’s equations

~E(x, y, z, t), ~H, current density~J, charge density ρ

~∇ ·~E = ρ (Gauss’ law)
~∇ · ~H = 0 (no magnetic sources)

~∇×~E +
∂~H
∂t

= 0 Faraday’s law)

~∇× ~H − ∂~E
∂t

=~J (Ampère’s law).
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Hamilton

William Rowan Hamilton (1805-1865)
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Gibbs

Josiah Willard Gibbs (1839-1903)
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Heaviside

Oliver Heaviside (1850-1925)
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Heaviside2

a self-taught English electrical engineer, mathematician, and physicist who
adapted complex numbers to the study of electrical circuits, invented
mathematical techniques to the solution of differential equations (later found
to be equivalent to Laplace transforms), reformulated Maxwell’s field
equations in terms of electric and magnetic forces and energy flux, and
independently co-formulated vector analysis. Although at odds with the
scientific establishment for most of his life, Heaviside changed the face of
mathematics and science for years to come.
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divergence theorem

In R3 = {(x1, x2, x3)} let ~F = (f1, f2, f3) be a vector field

div~F = ~∇ ·~F := ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

Divergence theorem: ∫∫∫
Ω

~∇ ·~F dV =
∫∫

∂Ω
~F ·~n dσ.
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curl, Stokes theorem

In R3 = {(x1, x2, x3)} let ~F = (f1, f2, f3) be a vector field

curl ~F = ~∇×~F :=

∣∣∣∣∣∣
~i ~j ~k
∂

∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

∣∣∣∣∣∣
Stokes’ theorem: ∫∫

S
~∇×~F ·~n dσ =

∫
∂S

~F ·~T ds.

Chong-Kyu Han (February 23rd, 2010) January 24, 2010 12 / 10


