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Abstract. Given a system of s independent 1-forms on a smooth man-
ifold M of dimension m, we study the existence of integral manifolds by
means of various generalized versions of the Frobenius theorem. In par-
ticular, we present necessary and sufficient conditions for there to exist
s′-parameter (s′ < s) family of integral manifolds of dimension p := m−s,
and a necessary and sufficient condition for there to exist integral mani-
folds of dimension p′, p′ ≤ p. We also present examples and applications
to complex analysis in several variables.

Introduction. In this paper we present various generalized versions of
the Frobenius theorem on involutivity in explicit forms. Let M be a
smooth (C∞) manifold of dimension m and θ = (θ1, . . . , θs) be a system
of smooth 1-forms that are linearly independent at every point of M . Then
the Frobenius theorem states that if θ satisfies the integrability condition
(1.6) then locally there is a s-parameter family of integral manifolds of
maximal dimension p := m − s. This theorem can be generalized in two
directions:
One is deciding whether there exists a s′(s′ < s) parameter family of
integral manifolds, which we shall discuss in §2. Generalization in this
direction is essentially reducing the Pfaffian system θ to the submanifold
where torsions vanish. It turned out that this is precisely the reduction
process (Step 1 of §1) in prolongation of a Pfaffian system to an equiv-
alent involutive system. The other is finding integral manifolds of lower
dimensions (less than p), which we shall discuss in §3. This is basically
linear algebra of computing the rank of the torsion tensor dθ modulo θ.
In the case s = 1, the classical theorem of Darboux (Theorem 3.10) as-
serts that if the rank of the system is r then M is foliated by integral
manifolds of dimension m − (r + 1). The case r = 0 is the Frobenius
integrability condition (1.6) and M is foliated by integral manifolds of
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dimension m− 1. Hence, Darboux theorem is a generalization of the sec-
ond kind of the special case s = 1 of the Frobenius theorem. Generalized
Frobenius theorems are useful in finding submanifolds with required prop-
erties as we see in [HT] and [HL]. Also, generalized Frobenius theorems
are very efficiently used in finding all the compatibility conditions for a
given overdetermined PDE system of generic type in order to find general
solutions, for which the readers are referred to the author’s survey articles
[H2] and [H3]. Existence of a single (isolated) integral manifolds of max-
imal dimension p belongs to both the first kind and the second kind of
generalization, which appears explicitly in [Bry] and [Wang]. The author
independently obtained the results together with further generalizations
that we presented in this paper. Afterwards, he finds some of the ideas
are already in E. Cartan, R. Bryant, or even in the writings of Pfaff and
Darboux. The purpose of this paper is to write down the various versions
of the generalized Frobenius theorem in explicit form, which is hard to find
in literature, in order to use as a basic reference in the future. The advan-
tage of the Pfaffian system of Frobenius type (definition is given in §1) is
that the notion of involutivity is the same as the integrability condition
(1.6) and the existence theory works in C∞category, or in Ck-category
for sufficiently large k, while in the classical theory of E. Cartan on ex-
terior differential system the existence of solutions is proved by using the
Cauchy-Kowalewski theorem, assuming the analyticity (Cω) of the data.

Real valued functions ρ1, . . . , ρd defined on M shall be said to be non-
degenerate if dρ1 ∧ · · · ∧ dρd 6= 0 modulo ρ1, . . . , ρd. Our argument in
this paper is purely local: we work on a neighborhood of a reference point
and often we shrink this neighborhood to a smaller one as our argument
proceeds.

§1. History and some background.

For a smooth (C∞) vector field X =
∑m

i=1 ai(x)∂/∂xi defined on an
open subset U ⊂ Rm a constant of motion, or a first integral, is a function
that remains constant along each integral curve of X. There are n − 1
functionally independent constants of motion that can be obtained by
solving the total differential equations

dx1

a1(x)
=

dx2

a2(x)
= · · · = dxm

am(x)
.
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When multiple vector fields

Xj =
m∑

i=1

ai
j(x)∂/∂xi, j = 1, . . . , p

are given F. Deahna [Deah] proved that if Xj ’s satisfy the integrability
conditions (1.1) then there exist s := m − p functions whose common
level sets are the integral manifolds. The problem was finding indepen-
dent solutions of the overdetermined PDE system of homogeneous linear
equations of first order:

m∑

i=1

ai
j(x)

∂u

∂xi
= 0 j = 1, . . . , p.

Theorem 1.1, which we call the Frobenius theorem, was first proved by
A. Clebsch [Cleb]. G. Frobenius is responsible for applying the theorem
to Pfaffian system (Theorem 1.2), thus paving the way for its usage in
differential topology (cf. Wikipedia , Frobenius theorem). Also, it was
Frobenius who first used d; the exterior derivative applied to Pfaffian
systems, and called it bilinear covariant (cf. [BCGGG]). Expressing the
theorem in terms of differential forms and their exterior derivative d has
great advantages in computation.

Now we recall the Frobenius theorem as in (cf. [War] Chapter 1). Let
Mm be a smooth manifold of dimension m. Let X1, . . . , Xp be smooth
vector fields that are linearly independent at every point. Let D be the
distribution of p-dimensional tangent planes spanned by X1, . . . , Xp. A
submanifold N of dimension p′ ≤ p is called an integral manifold of D if at
every point x ∈ N, TxN ⊂ D. The distribution D is said to be integrable
if

(1.1) [Xi, Xj ](x) ∈ D, ∀x ∈ M

The Frobenius theorem states

1.1. Theorem. Suppose that D is a smooth distribution spanned by a set
of smooth vector fields X1, . . . , Xp that satisfies the integrability condition
(1.1). Then at any point x ∈ M there exists a unique smooth integral
manifold N of maximal dimension p through x.

Let

(1.2) θ = (θ1, . . . , θs), s + p = m
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be a system of linearly independent 1-forms that defines D, that is, for
(x, V ) a tangent vector, V ∈ D if and only if θα(V ) = 0, for each α =
1, . . . , s. Typically, θ is found by taking smooth vector fields Y1, . . . , Ys,
p + s = m, so that

(1.3) X1, . . . , Xp, Y1, . . . , Ys

span the whole tangent space at every point of M and then taking the
dual 1-forms

(1.4) ω1, . . . , ωp, θ1, . . . , θs.

Consider the exterior algebra of differential forms Ω :=
⊕m

k=0 Ωk, where
Ωk is the set of smooth k-forms and Ω0 := C∞(M) is the ring of smooth
functions on M . Each Ωk is a module over C∞(M). A subalgebra I
is called an algebraic ideal if I ∧ Ω ⊂ I and if the following additional
condition is satisfied: if φ =

∑m
k=0 φk ∈ I, where φk ∈ Ωk, then each

component φk ∈ I (homogeneity condition).
Now let I be the algebraic ideal generated by θ, which is the set of all

elements of Ω of the form
∑s

α=1 θα∧φα, φα ∈ Ωk, for some k. The ideal
I is said to be closed if

(1.5) dI ⊂ I

Then the following are equivalent:
a) D is integrable in the sense that its generating vector fields satisfy (1.1).
b) I is closed.
c) For each α = 1, . . . , s,

(1.6) dθα = 0, mod (θ1, . . . , θs).

and we may state the Frobenius theorem as follows:

1.2. Theorem. Let M be a smooth manifold of dimension m and let θ =
(θ1, . . . , θs) be a system of smooth 1-forms that are linearly independent
at every point of M. If θ satisfies the integrability condition (1.6) then for
any point x ∈ M there exists a unique integral manifold N of dimension
p := m − s through x. Therefore, M is foliated by s-parameter family of
integral manifolds.

The Frobenius’ setting of Pfaffian system with d was studied further by
G. Darboux [Dar] and later developed to be the theory exterior differential
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system by E. Cartan [Car 1],[Car 2]. In Cartan’s theory the basic notions
are prolongation and involutivity, which we now briefly review. We refer
the readers to our standard references [BCGGG], [GJ] and [Kura].

Let M be a smooth (C∞) manifold of dimension m and let θ1, · · · , θs,
ω1, · · · , ωp, s+p ≤ m, be a set of linearly independent smooth 1-forms on
M . We are concerned with the problem of finding a smooth submanifold
N ⊂ M of dimension p which satisfies

(1.7)
θα|N = 0, α = 1, · · · , s (Pfaffian system)

Ω|N 6= 0, where Ω = ω1 ∧ . . . ∧ ωp (independence condition).

Such a submanifold N is called an integral manifold of dimension p sat-
isfying the independence condition, or simply a ’solution’ of (1.7). To
find a solution of (1.7) we consider subbundles I ⊂ J ⊂ T ∗M . Here
I = 〈θ1, · · · , θs〉 and J = 〈θ1, · · · , θs, ω1, · · · , ωp〉, where 〈· · · 〉 denotes the
linear span of what are inside. Let D be the (m − s)-dimensional plane
field annihilated by θ1, · · · , θs. For k = 1, · · · , p, an integral manifold of
(1.7) of dimension k is a submanifold of M of dimension k whose tangent
spaces are contained in D. An integral manifold N of dimension p such
that Ω|N 6= 0 is a solution of (1.7). If N is an integral manifold of (1.7)
then θα|N = 0, and therefore, dθα|N = 0, for each α = 1, · · · , s. A k-
dimensional integral element is a k-dimensional subspace (x,E) of TxM ,
for some x ∈ M , on which θα = 0 and dθα = 0, for all α = 1, · · · , s.
By V (I, J) we denote the set of all p-dimensional integral elements (x,E)
satisfying Ω|E 6= 0. Basic idea of the theory is that we can find a solution
by constructing k-dimensional integral manifold Nk with Nk−1 as initial
data, inductively for k = 1, · · · , p, so that we have a nested sequence of
integral manifolds

N0 ⊂ N1 ⊂ · · · ⊂ Np.

Let
{x} = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E

be the corresponding flag of integral elements. The notion of involutiv-
ity is the existence of such a flag for each element of V (I, J) so that
the Cauchy problem is well-posed in each step and the solutions to the
(k + 1)st Cauchy problem remain solutions to the family of kth Cauchy
problem with data smoothly changing in (k+1)st direction . If the system
is analytic (Cω) one can construct such a nested sequence of integral man-
ifolds by using the Cauchy-Kowalewski theorem. This is the idea of the
Cartan-Kähler theorem which asserts that an involutive analytic Pfaffian
system has analytic solutions. If (I, J) is not involutive we construct an
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involutive system which is equivalent to the original system by repeating
the process of the following two steps:

Step 1. Reduce (1.7) to a submanifold M ′ ⊂ M so that V ′(I, J) → M ′

is surjective:

Let M1 be the image of V (I, J) → M. If M = M1 then we do nothing.
If M1 6= M then we note that any integral manifold of (I, J) must lie in
M1, and so we set

V1(I, J) = {(x,E) ∈ V (I, J) : E ⊂ TxM1}.

Now consider the projection

V1(I, J) → M1

with image M2. If M2 = M1 we stop; otherwise we continue as before.
Eventually we arrive either at the empty set, in which case (I, J) has no
integral manifolds, or else at M ′ with V ′(I, J) → M ′ being surjective and
with all (x,E) ∈ V ′(I, J) satisfying E ⊂ TxM ′.

Step 2. Assuming V (I, J) → M is surjective we do prolongation.

To recall the definitions, let Gp(M) be the Grassmann bundle of p-
planes in TM . Let π1, · · · , πr be a set of 1-forms so that

θ1, · · · , θs, ω1, · · · , ωp, π1, · · · , πr

form a basis of T ∗M. Let (x,E) ∈ V (I, J). Since Ω|E 6= 0, on a neigh-
borhood of (x,E) ∈ Gp(M) we have θα = mα

ρ ωρ, πε = `ε
ρω

ρ, (summation
convention for ρ = 1, · · · , p) and Ω 6= 0. Thus {mα

ρ , `ε
ρ} are local fibre

coordinates in Gp(M). The canonical system on Gp(M) is the set of the
tautological 1-forms

(1.8)
θα −mα

ρ ωρ, α = 1, · · · , s

πε − `ε
ρω

ρ, ε = 1, · · · , r,

where the summation convention is used for ρ = 1, · · · , p. The first pro-
longation (I(1), J (1)) is the restriction to M (1) := V (I, J) ⊂ Gp(M) of
the canonical system. Since mα

ρ = 0 on V (I, J) the problem of finding
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a solution of (1.7) is equivalent to finding a submanifold N (1) ⊂ M (1) of
dimension p satisfying

(1.9)
θα|N(1) = 0, (πε − `ε

ρω
ρ)|N(1) = 0

Ω|N(1) 6= 0.

Integral manifolds of (I, J) and those of (I(1), J (1)) are in a one-to-one cor-
respondence. The k-th prolongation (I(k), J (k)) on M (k) = V (I(k−1), J (k−1))
is defined inductively to be the first prolongation of (I(k−1), J (k−1)) on
M (k−1). We have a version of the Cartan-Kuranishi theorem [Kura] :

1.3 Theorem. Let (I(k), J (k)), k = 1, 2, · · · , be the sequence of prolon-
gations of (I, J). Suppose that , for each k, M (k) is a smooth submanifold
of Gp(M (k−1)) and that the projection M (k) → M (k−1) is a surjective
submersion. Then there is k0 such that prolongations (I(k), J (k)) are in-
volutive for k ≥ k0.

Now we discuss the Pfaffian system of Frobenius type. Consider the al-
gebraic ideals I and J generated by {θ1, · · · , θs} and {θ1, · · · , θs, ω1, · · · , ωp},
respectively. (1.7) is quasi-linear if dI ⊂ J , namely,

dθα =
s∑

β=1

φα
β ∧ θβ +

p∑
ρ=1

ψα
ρ ∧ ωρ,

for some 1-forms φα
β , ψα

ρ , for each α = 1, · · · , s. Existence of solutions
has been studied mainly for the quasi-linear systems. (1.7) is said to be of
Frobenius type if s+p = m, that is, if {θ1, · · · , θs, ω1, · · · , ωp} is a coframe
of M . It is easy to see that Frobenius types are quasi-linear. In this case
no further equations are obtained by prolongation and the existence of
general integral manifolds is determined only by Step 1 of §2. The notion
of involutivity is very subtle as we see in [BCGGG]. However, for V (I, J)
of Frobenius type the following are equivalent (see [GJ] Chapter 3):

i) V (I, J) → M is surjective.
ii) (I, J) is integrable in the sense of the Frobenius theorem.
iii) (I, J) is invoultive.

The author studies in [H3] the reduction to a submanifold of a Pfaffian
system of Frobenius type based on the following lemma, whose proof is
easy.
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1.4 Lemma. Let M be a smooth manifold of dimension m. Let θ :=
(θ1, · · · , θs) be a set of independent 1-forms on M and D :=< θ >⊥ be
the (m − s)-dimensional plane field annihilated by θ. Suppose that N is
a submanifold of M of dimension n := m− r, for some r ≤ s, defined by
T1 = · · · = Tr = 0, where Ti are smooth real-valued functions of M such
that dT1 ∧ · · · ∧ dTr 6= 0 . Then the following are equivalent :

(i) D is tangent to N .
(ii) dTj ≡ 0, mod θ, on N , for each j = 1, . . . , r.

In (ii) mod θ means that modulo the algebraic ideal I. Thus (ii) is
equivalent to saying that for each j = 1, · · · , r we have dTj∧θ1∧· · ·∧θs =
0, on N . Our basic observation is the following algorithm for Step 1: For
each α = 1, · · · , s, set

dθα = Tα
ijω

i ∧ ωj , mod θ, (summation convention for i, j = 1, · · · , p)

where Tα
ij are skew symmetric in (ij). Let T1 be the set of functions

{Tα
ij}. If T1 are identically zero then V (I, J) → M is surjective, which is

the Frobenius integrability condition for θ, and by Frobenius theorem we
have (m − p)-parameter family of integral manifolds. Otherwise, let M1

be the common zero set of T1 and set

dTα
ij = Tα

ij,kωk, mod θ.

Let T2 be the set of functions Tα
ij,k. If T2 are identically zero on M1

then V1(I, J) → M1 is surjective, and by Frobenius theorem there exist
(dimM1 − p)-parameter family of solutions. If T2 are not identically zero,
let M2 be the submanifold of M1 defined by T2 = 0 and continue as before.
Eventually we arrive either at an empty set, in which case there is no
integral manifolds, or at an integrable Pfaffian system on a submanifold
M ′ ⊂ M, in which case there exist (dimM ′ − p)-parameter family of
integral manifolds.

§2. s′ parameter family of integral manifolds of maximal dimen-
sion.

Based on Lemma 1.4 and the remarks thereafter, we discuss in this sec-
tion the existence of s′(s′ < s) parameter family of maximal dimensional
integral manifolds. In particular, the case s′ = 0 is the existence of a single
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isolated integral manifold of dimension p. Let Mm and θ = (θ1, . . . , θs) be
the same as in the Frobenius theorem (Theorem 1.2), and let ω1, . . . , ωp,
p + s = m, be a complementary set of 1-forms.

In order to reduce the Pfaffian system θ = 0 to a submanifold we want,
by Lemma 1.4, to find real valued functions ρ1, . . . , ρd such that

i) dρ1 ∧ · · · ∧ dρd 6= 0
ii) dρj ≡ 0, mod (ρ1, . . . , ρd, θ

1, . . . , θs), for j = 1, . . . , d.

Then the problem is reduced to M ′ := {x ∈ M : ρj(x) = 0, j =
1, . . . , d}. Let m′ = m − d be the dimension of M ′. Let i : M ′ ↪→ M
be the inclusion map. Then ii) implies that the rank of i∗θ is constantly
s′ = s − d. If the torsions vanish on M ′, then by the Frobenius theorem
there exists a s′-parameter family of integral manifolds of dimension

m′ − s′ = (m− d)− (s− d) = m− s = p.

In practice, one can reduce to a submanifold of codimension d = 1 by
finding ρ: we have

2.1 Theorem. Let M be a C∞manifold of dimension m and θ = (θ1. . . . , θs)
be a system of C∞1-forms that are linearly independent at every point of
M . Suppose that a C∞real valued function ρ on M is non-degenerate and
satisfies

dρ ≡ 0, mod (ρ, θ).

Then
θ1 ∧ · · · ∧ θs ≡ 0, mod (ρ, dρ).

Proof: The hypothesis implies that

(2.1) dρ = ρψ +
s∑

i=1

aiθ
i

for some C∞functions ai and a 1-form ψ. Let (x, V ) be an arbitrary
tangent vector at x to the zero set of ρ. Since dρ(x) 6= 0, some of ai are
non-zero at x. Evaluating (2.1) at (x, V ) we have

s∑

i=1

ai(x)θi(V ) = 0.
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This implies that
i∗(θ1 ∧ · · · ∧ θs) = 0

where
i : {x ∈ M : ρ(x) = 0} ↪→ M

is the inclusion map, which is equivalent to the conclusion. ¤

2.2 Example. Reduction to a system without solutions on a
submanifold.

In R4 = {(x, y, z, w)} consider the following two independent 1-forms

θ = (θ1, θ2), where θ1 = dz + xdy, θ2 = dw + wdx.

Let ρ(x, y, z, w) = w and let M ′ = {w = 0}. Since dρ = dw 6= 0 and
dρ = dw ≡ 0, mod (w, dw, θ1, θ2), the Pfaffian system θ = 0 reduces to
M ′.

But there is no integral manifolds in i : M ′ ↪→ R4 for the following
reason: i∗θ2 = 0 , i∗θ1 = dz + xdy and

d(i∗θ1) = i∗(dθ1) = dx ∧ dy 6= 0 mod (i∗θ).

2.3 Example. Reduction to an involutive system on a submani-
fold.

In R4 = {(x, y, z, w)} given 1-forms

θ = (θ1, θ2), where θ1 = dz + zdy, θ2 = dw + w(1 + y)dx.

As in Example 2.2 we can easily check that the Pfaffian system (R4; θ1, θ2)
reduces the submanifold M ′ = {w = 0}. In the submanifold i : M ′ ↪→ R4

we have i∗θ2 = 0 , i∗θ1 = dz + zdy and

i∗(dθ1) = dz ∧ dy

= −zdy ∧ dy mod θ

= 0.

Hence, the reduced system (M ′, θ1) is involutive so that there exists a
1-parameter family of integral manifolds of dimension 2. Similarly, M ′′ =
{z = 0} gives another reduction. Then for the inclusion map i : M ′′ ↪→ R4,
we have

d(i∗θ2) = i∗(dθ2) = wdy ∧ dx 6= 0.

Therefore, torsion is w. In fact, the plane w = 0, z = 0 is the only integral
manifold that is contained in M ′′.



FROBENIUS THEOREM ON INVOLUTIVITY 11

2.4 Example. Reduction to a pair of involutive systems on sub-
manifolds.

In R4 = {(x, y, z, w)} we consider 1-forms θ = (θ1, θ2), where

θ1 = dz + wf(x, y)dw, θ2 = dw + zg(x, y)dz.

As in Example 2.2 we can easily check that the Pfaffian system (R4; θ1, θ2)
reduces to the submanifold M ′ = {w = 0}. In the submanifold i : M ′ ↪→
R4 we have i∗θ1 = dz , i∗θ2 = zg(x, y)dz, so that the original system
reduces to (M ′, θ1). Since d(i∗θ1) = 0, the reduced system is involutive.
Similarly, M ′′ = {z = 0} gives another reduction. Then for the inclusion
map i : M ′′ ↪→ R4, we have i∗θ1 = wf(x, y)dw, i∗θ2 = dw, so that the
original system reduces to (M ′′, θ2). Since d(i∗θ2) = 0, the reduced system
(M ′′, θ2) is involutive.

Next we discuss the cases where there exists exactly one integral mani-
fold of dimension p. These cases may be regarded as reduction of the Pfaf-
fian system to p-dimensional submanifold. For possible applications we
discuss the cases with degenerate torsion, that is, torsion T with dT (0) = 0
at the reference point:

On R3 = {(x, y, z)} consider a 1-form

θ = dz + f(x, y, z)dy,

where f(x, y, z) is a smooth (C∞) real valued function defined on an open
neighborhood of the origin. We have

dθ = (fxdx + fydy + fzdz) ∧ dy

= fxdx ∧ dy, mod θ.

Therefore, the torsion is
T = fx.

If T is identically zero then by the Frobenius theorem there exists a 1-
parameter family of integral manifolds.

In order construct examples with singular torsion sets we set

(2.2) T = fx = z(z − g(x, y)) = z2 − zg(x, y).

I want z = 0 is the only integral manifold, so that we require{
f(x, y, 0) = 0
fx = z2 − zg(x, y).

Second condition implies that

f(x, y, z) = z2x− zG(x, y),

where Gx = g. Now any pair (G, g) with Gx = g yields the torsion (2.2).
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2.5 Example. Degenerate torsion with an isolated integral man-
ifold. G(x, yz) = x2, g(x, y) = 2x : Let

θ = dz+(z2x−zx2)dy. Then dθ ≡ (z2−2zx)dx∧dy, mod θ. Therefore,
T = z(z − 2x). The zero set of T is two planes intersecting along y-axis,
among which the plane z = 0 is an integral manifold.

2.6 Example. Degenerate torsion with an isolated integral man-
ifold. Let fx = z(z2 − x2 − y2), so that f(x, y, z) = z3x− zx3/3− zy2x.
Then the zero set of the torsion is given by z(z2 − x2 − y2) = 0. This
variety is the union of the plane z = 0 and the cone z2 − x2 − y2 = 0.
z = 0 is an integral manifold.

§3. Integral manifolds of lower dimensions.

First of all, we prove the following

3.1 Theorem. Let Mm be a smooth manifold and let θ := (θ1, · · · , θs)
be a system of smooth 1-forms that are linearly independent at every point
of M . Let n be an integer such that 2 ≤ n ≤ p := m − s. Suppose that
i : Nn ↪→ Mm is a submanifold of dimension n, defined by ρ1 = · · · =
ρm−n = 0, where ρj are smooth real-valued functions of M such that
dρ1 ∧ · · · ∧ dρm−n 6= 0 . Then the following are equivalent:

(i) i∗θα = 0, α = 1, · · · , s.

(ii) ∀α = 1, · · · , s, θα ≡ 0, mod (ρ1, · · · , ρm−n, dρ1, · · · , dρm−n).

3.2 Lemma. Let (t, x), where t = (t1, · · · , td), x = (x1, · · · , xn), be the
standard coordinates of Rd+n. Suppose that f is a C∞ function defined
on a neighborhood of the origin such that f(0, x) = 0. Then f(t, x) =∑d

j=1 tjg
j(t, x), for some C∞ functions g1, · · · , gd defined on a smaller

neighborhood of the origin.
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Proof of Lemma 3.2.

f(t, x) =
∫ 1

0

∂

∂τ
f(τt, x)dτ

=
∫ 1

0

d∑

j=0

tjfj(τt, x)dτ, where fj =
∂f

∂tj

=
d∑

j=1

tj

∫ 1

0

fj(τt, x)dτ.

Let gj(t, x) =
∫ 1

0
fj(τt, x)dτ, for each j = 1, · · · , d. Then it is standard to

show that gj are C∞.

Proof of Theorem 3.1:

i) ⇒ ii): Choose independent 1-forms ω1, . . . , ωn so that

dρ1, . . . , dρm−n, ω1, . . . , ωn

span T ∗M. Then
i∗(ω1 ∧ · · · ∧ ωn) 6= 0

Set

(3.1) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

bα
j ωj

Since i∗θα = 0 and i∗(dρj) = 0, pulling back (3.1) by i we have

0 =
n∑

j=1

bα
j (i∗ωj).

Therefore, for each α, j, we have bα
j = 0 on N , which implies by Lemma

3.2

(3.2) bα
j =

m−n∑

k=1

hαk
j ρk,

for some smooth function hαk
j . Substituting (3.2) for bα

j in (3.1) we have

(3.3) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

m−n∑

k=1

ρkhαk
j ωj
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ii) ⇒ i) : Suppose that

(3.4) θα =
m−n∑

j=1

ρjψ
αj +

m−n∑

j=1

hαjdρj

for some 1-forms ψαj and smooth functions hαj . Apply any tangent vector
(x, V ) ∈ TN to (3.4). Since ρj(x) = 0 and dρj(V ) = 0 , we have θα(V ) =
0, which implies that i∗θα = 0. ¤

Now we study by using Theorem 3.1, the existence of integral manifold
i : Nn ↪→ Mm, 2 ≤ n ≤ p, of the Pfaffian system

(3.5) θα = 0, α = 1, . . . , s, s + p = m

Suppose that N is an integral manifold of (3.5). Then i∗θα = 0 implies
that d(i∗θα) = i∗(dθα) = 0. Let ω1, . . . , ωp be the complementary set of
1-forms. We set as usual

(3.6) dθα =
p∑

i,j=1

Tα
ijω

i ∧ ωj , mod θ, α = 1, · · · s,

where Tα
ji = −Tα

ij . Consider
(
p
2

)
:= p(p− 1)/2 linearly independent differ-

ential 2-forms ωi ∧ ωj arranged in lexico-graphical order. Let

(3.7) T = (Tα
ij)

be the matrix of size s×(
p
2

)
. We shall call T torsion of the Pfaffian system

(3.5).

3.3 Proposition. Let M be a smooth manifold of dimension m and let
θ1, · · · , θs, ω1, · · · , ωp be a system of smooth 1-forms as in (3.5)-(3.6).
Suppose that N is an integral manifold of (3.5) of dimension n, 2 ≤ n ≤ p.
Then there exists

(
p
2

)×(
n
2

)
matrix valued smooth function A of rank

(
n
2

)
defined on N such that

(3.8) T A = 0.

In particular, if Np is an integral manifold of maximal dimension then
T = 0 on Np.
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Proof. After re-ordering if necessary, we may assume that ω1 ∧ · · · ∧
ωn|N 6= 0. Set

(3.9) ωλ|N =
n∑

i=1

aλ
i ωi|N , λ = n + 1, · · · , p.

Then the restriction to N of (3.6) reads
(3.10)

0 =
∑
i<j

i,j=1,··· ,n

τα
ijω

i ∧ ωj , where

τα
ij = Tα

ij +
p∑

µ=n+1

Tα
iµaµ

j −
p∑

λ=n+1

Tα
jλaλ

i +
∑
λ<µ

λ,µ=n+1,··· ,p

Tα
λµ(aλ

i aµ
j − aλ

j aµ
i ),

α = 1, · · · , s. Since ωi ∧ ωj , i < j, are independent on N (3.10) implies
(3.11)

Tα
ij +

p∑
µ=n+1

Tα
iµaµ

j −
p∑

λ=n+1

Tα
jλaλ

i +
∑
λ<µ

λ,µ=n+1,··· ,p

Tα
λµ(aλ

i aµ
j − aλ

j aµ
i ) = 0,

for each α = 1, · · · , s and each pair (ij) with i < j, i, j = 1, · · · , n. In
matrices we write (3.11) as

(3.12) T A = 0,

where A is a matrix of size
(
p
2

)× (
n
2

)
given as follows: for a pair I = (ij)

with i < j , i, j = 1, · · · , n, I-th column of A is

(0 · · · 1 · · · aµ
j · · · −aλ

i · · · aλ
i aµ

j − aλ
j aµ

i︸ ︷︷ ︸ · · · )
t

↑ ↑ ↑ ↑
(ij)th (iµ)th (jλ)th (λµ)th

for n < λ < µ. Observe that the first
(
n
2

)
rows or A is the identity matrix,

therefore A is of maximal rank. In particular, if n = p then A is the
identity matrix of size

(
p
2

)
, therefore, T is identically zero on an integral

manifold of maximal dimension p. ¤

Observe that (3.12) is a system of
(
n
2

)
independent linear equations on

the
(
p
2

)
columns of T . Hence we have
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3.4 Theorem. If N is an integral manifold of (3.5) of dimension n,
2 ≤ n ≤ p, then the number of linearly independent columns of T is at
most

(
p
2

)− (
n
2

)
.

3.5 Definition. Given a set of smooth functions Tα, α = 1, · · · , k on M
a smooth function ρ is said to be a common factor of Tα’s if Tα = ρφα,
for some smooth function φα for each α = 1, · · · , k.

3.6 Theorem. Let θ1, · · · , θs, ω1, · · · , ωp be 1-forms of Mm, s + p = m,
as in (3.5)-(3.6). Let n, 2 ≤ n ≤ p, be an integer. Then there exists an
integral manifold N of (3.5) of dimension n if and only if there exists a
non-degenerate set of functions ρ = (ρ1, · · · , ρm−n) having the following
properties: on the common zero set of ρ the first

(
n
2

)
columns T1, · · · , T(n

2)
belong to the linear span of Tλ, λ =

(
n
2

)
+ 1, · · · ,

(
p
2

)
, on N , where Tλ is

the λ-th column of T , and

(3.13) θα = 0, mod (ρ, dρ).

3.7 Corollary. Under the same hypotheses as in Theorem 3.6 suppose
that s ≥ (

p
2

) − (
n
2

)
+ 1. Then there exists an integral manifold of (3.5)

of dimension n if and only if there exists a non-degenerate set of real-
valued functions ρ = (ρ1, · · · , ρm−n) such that the determinants of square
submatrices of T of size

(
p
2

) − (
n
2

)
+ 1 are zero modulo ρ and ρ satisfies

(3.13).

3.8 Corollary. Under the same hypotheses as in Theorem 3.6, if s = 1,
then there exists an integral manifold of dimension n if and only if there
exists a non-degenerate set of smooth functions ρ = (ρ1, · · · , ρm−n) such
that

(3.14) Tij = 0, mod (ρ, Tλµ : either λ > n or µ > n)

that satisfies (3.13).

3.9 Proposition. Suppose that a submanifold Nn ⊂ Mm given as the
common zero locus of a non-degenerate set of smooth real-valued functions
ρ = (ρ1, . . . , ρm−n) is an integral manifold of (3.5) of dimension n <

p. Then N is contained in a (unique) integral manifold Ñ of maximal
dimension p if and only if there exist a non-degenerate set of smooth real-
valued functions τ = (τ1, · · · , τs) with the following properties:
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i) τj ≡ 0, mod ρ, for each j = 1, · · · , s
ii) θα ≡ 0, mod (τ, dτ), α = 1, . . . , s.

ρ1, · · · , ρm−n and τ1, · · · , τs in the above propositions can be obtained
from the factorization of the coefficients of dθα: Let τα

ij be the LHS of
(3.11) for each α = 1, . . . , s, i, j = 1, . . . , n, and let Tα

ij , α = 1, . . . , s and
i, j = 1, . . . , p be as in (3.6). Then τα

ij are zero modulo ρ and Tα
ij are zero

modulo τ.

Remark. If each 1-form of (3.5)-(3.6) is real-analytic (Cω), then Tα
ij̄

are
(Cω) and therefore, factorizable into a product of finitely many complex
valued functions f with df(P ) 6= 0. The factorization is unique modulo
unit.

Now we are concerned with the problem of deciding whether M is
foliated by integral manifolds of dimension n < p. In the case s = 1, i.e.,
the Pfaffian system (3.5) consists of a single 1-form θ, is the classical Pfaff
problem (see [BCGGG Chapter II). Let θ be a smooth 1-form on a smooth
manifold Mm. The rank r is defined by the conditions

θ ∧ (dθ)r 6= 0, θ ∧ (dθ)r+1 = 0.

There is a second integer t defined by

(dθ)t 6= 0, (dθ)t+1 = 0.

Elementary arguments show that there are two cases:

(i)t = r;

(ii)t = r + 1.

The first is the case θ ∧ (dθ)r 6= 0 and (dθ)r+1 = 0 and the second is the
case (dθ)r+1 6= 0 and θ ∧ (dθ)r+1 = 0. The following theorem is due to
Darboux.

3.10 Theorem. Let θ be a 1-form. In a neighborhood suppose r and t
are constant. Then θ has the normal form

(3.15)
θ = y0dy1 + · · ·+ y2rdy2r+1, if r + 1 = t

θ = dy1 + y2dy3 + · · · y2rdy2r+1, if r = t.

In these expressions, the y’s are independent functions and are therefore
parts of a local coordinate system.

Proof: See [BCGGG] page 40 .
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3.11 Corollary. Suppose that θ is a smooth 1-form of rank r on Mm and
that 2r + 1 ≤ m. Then M is foliated by integral manifolds of dimension
m− (r +1). Integral manifolds are given by y2k−1 = const, k = 1, . . . , r +
1. In particular, if θ is of rank 0, which is the case of the Frobenius
integrability, then M is foliated by integral manifolds of dimension m− 1.

§4. Some applications and problems in several complex vari-
ables.

In this section we present applications in several complex variables.

4.1 Complex submanifolds in real hypersurfaces.

Let Cn+1 := {(z, w)}, where z = (z1, . . . , zn). Let r be a non-degenerate
real-valued function on a neighborhood U of origin of Cn+1. We consider
a real hypersurface M := {(z, w) ∈ Cn+1 : r(z, w) = 0}. Problem is to find
necessary and sufficient conditions in terms of derivatives of r for there to
exist a complex manifold of complex dimension p = 1, . . . , n. Let θ := i∂r
(cf. [CM]). Then the problem is finding integral manifold N2p of θ = 0
which is invariant under the complex structure tensor J . This problem
belongs to the second kind (§3). Hence by Corollary 3.11, we find rank
of θ first. dθ mod θ is called the Levi-form. The case of rank 0 is called
the Levi-flat case. In [HT] we solved this problem and presented several
examples in C3 and C4 .

4.2 Complex submanifolds in almost complex manifolds.

Let (M2m, J) be a smooth almost complex manifold. For a real tangent
vector X ∈ TM let X ′ = 1/2(X−√−1JX) and X ′′ = 1/2(X +

√−1JX).
The complex vectors X ′ and X ′′, which we shall call (1, 0) part of X and
(0, 1) part of X, respectively, are eigenvectors of J associated with the
eigenvalues +i, and −i, respectively. Then we have X = X ′+X ′′ and the
decomposition of the complexified tangent bundle:

TCM = T ′M ⊕ T ′′M ,

where T ′M and T ′′M are the set of all (1, 0) vectors and (0, 1) vectors,
respectively. Then we see that T ′M = T ′′M . On a neighborhood of
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the reference point P ∈ M let L1, . . . , Lm and L̄1, · · · , L̄m be smooth
sections of T ′M and T ′′M , respectively, that are linearly independent at
every point. Let θ1, . . . , θm, θ̄1, . . . , θ̄m be the dual 1-forms. For a smooth
function t we define ∂t :=

∑m
j=1(Ljt)θj and ∂̄t :=

∑m
j=1(L̄jt)θ̄j . Then we

see that dt = ∂t+ ∂̄t. A submanifold N2n ↪→ M is a complex submanifold
if and only if N is an integral manifold of the complex Pfaffian system
θ̄ := (θ̄1, . . . , θ̄m). Thus we set

(4.1) dθ̄λ ≡
∑
µ<ν

Tλ
µνθµ ∧ θν , mod θ̄,

where λ, µ, ν = 1, . . . ,m. The RHS of (4.1) is basically same as the Ni-
jenhuis tensor, which is the obstruction to the integrability. In [HL] we
discuss the existence of integral manifolds using a complexified version of
our theory of §3.

4.3 Problem. Minimality and maximality of real submanifolds

Let M ⊂ Cn+d, n ≥ 0, be a C∞real hypersurface defined as a common
zero locus of d nondegenerate real-valued function r1, . . . , rd, d ≥ 2. The
CR structure bundle of M is H(M) := T (M) ∩ JT (M), which is the
subbundle of the tangent bundle of maximal complex subspaces. The
standard complex structure on Cn+d gives the decomposition HC(M) :=
H ′(M)⊕H ′′(M). Let

(4.2) θj :=
√−1∂rj , j = 1, · · · , d.

M is said not to be minimal (cf. [Tuma]) if there exists a submanifold
M ′ ⊂ M with the same CR structure bundle, that is, H(M ′) = H(M).
Then the problem is whether one can tell by the derivatives of the defin-
ing functions r1, . . . , rd whether or not M is minimal. There is an analo-
gous problem on maximality. As typical examples, the intersection of the
sphere

∑n
j=1 |zj |2 = 1 with a complex submanifold is a real submanifold

of maximal CR structure. If M is a real submanifold of codimension d,
with the complex dimension of H ′(M) is (n + d) − k, then d/2 ≤ k ≤ d.
Maximality is the cases k = d/2 if d is even and k = (d + 1)/2 if d is odd.
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4.4 Problem. Invariant submanifolds of almost complex submanifolds

In Cn, we consider the complex 1-forms

θj := dzj +
n∑

k=1

Aj
k(z, z̄)dz̄k, j = 1, . . . , n,

where Aj
k are smooth functions that vanish at the origin. Let J be the

almost complex structure whose (1, 0) forms are given by θ := (θ1, . . . , θn),
called the purturbation of the standard complex structure by Aj

k. Then
the problem is finding conditions on Aj

k for there to exist a J-invariant
submanifold of M .
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[Cleb] A. Clebsch, Über die simultane Integration linearer partieller Differential-
gleichungen, J. Reine und Angew. Math. (Crelle) 65 (1866), 257-268.

[CM] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds,
Acta Math. 133 (1974), 219-271.

[Dar] G. Darboux, Sur le problème de Pfaff (1),(2), Bull.Sci. Math. 6 (1882),
14-36, 49-68.
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