Complex Analysis (300.247) Final Examination

December 20, 2001

1. (10) Evaluate the following integrals:
a) $\int_{|z|=1} \frac{\cos \left(\frac{z}{2}\right)-1}{z^{2}} d z$.
b) $\int_{|z|=1} \frac{\cos \left(\frac{z}{2}\right)-1}{z^{3}} d z$.
2. (10) Find a linear fractional transformation that maps the points $z_{1}=2, \quad z_{2}=-1, \quad z_{3}=-i$, onto $w_{1}=\infty, \quad w_{2}=-1, \quad w_{3}=-i$, respectively.
3. (10) Find the image of $|z| \leq \frac{1}{2}$ under the transformation $w=\frac{z-1}{z+1}$.
4. (10) If $a>e$, show that $e^{z}=a z^{n}$ has n roots in $|z|<1$.
5. Evaluate the following integrals:
a)(15) $\int_{-\infty}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x$.
b) (15) $\int_{-\infty}^{\infty} \frac{\cos (\pi x)}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
c) (20) $\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x$.
6. (20) Let $f(z)=\frac{1}{z^{2}(z-2)}$. Find the series representation of $f(z)$ in each of the following regions:
a) $0<|z|<2$.
b) $|z|>2$.
c) $0<|z-2|<2$.
7. (15) Let Ω be a bounded, simply connected domain in C. Suppose that for each $n=1,2, \ldots, f_{n}$ is analytic in Ω and that $\sum_{n=1}^{\infty} f_{n}(z)$ converges to $S(z)$ uniformly on Ω. Prove:
a) $S(z)$ is analytic.
b) $S^{\prime}(z)=\sum_{n=1}^{\infty} f_{n}^{\prime}(z), \quad \forall z \in \Omega$.
8. (10) Show that the series

$$
\zeta(z):=\sum_{n=1}^{\infty} n^{-z}
$$

converges absolutely for any z with $\operatorname{Re} z>1$.
9. (15) Let f be an analytic function of a domain A onto a domain B. Let $w \in B$ and let γ be a small circle in A centered at $z_{0} \in A$. Suppose that f is one-to-one and f^{\prime} is nowhere zero. Prove that

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

for w sufficiently close $f\left(z_{0}\right)$.

