Complex Analysis Midterm Exam

October 27, 2001

1. (10) Find all the third roots of i.
2. (20) Evaluate the integrals:
a) $\int_{|z|=1} \frac{e^{3 z} d z}{z+5}$.
b) $\int_{|z|=1} \frac{e^{3 z} d z}{z(z+5)}$.
c) $\int_{|z|=1} \frac{e^{3 z} d z}{z^{2}(z+5)}$.
3. (20) Let $f(z)$ be an analytic function whose real part is $u(x, y)=$ $e^{-y} \cos x$.
a) Find the imaginary part of $f(z)$.
b) Find $f^{\prime}(z)$.
4. (60) Prove :
a)If $u(x, y)$ is harmonic then $u_{x}-i u_{y}$ is holomorphic.
b) If $f(z)=u+i v$ is analytic in a domain and $f^{\prime}(z) \neq 0$ then the level curves of u and v are orthogonal to each other.
c) If $u(x, y)$ is harmonic and $u(x, y)>0$ for all $(x, y) \in \mathbf{C}$ then u is constant.
d) If an entire function f satisfies $|f(z)|<A|z|^{n}$ for some positive number A then f is a polynomial of degree $\leq n$.
e) $\left|\int_{|z|=1} \frac{d z}{3+5 z^{2}}\right| \leq \pi$.
f) If $f(z)$ is analytic in a domain such that $|f(z)|=$ constant then $f(z)$ is constant.
5. (15) Evaluate $\int_{C} \frac{d z}{z}$, where C is a contour given by

$$
z(t)=3 t-t^{2}+\left(1-t^{2}\right) i, \quad 0 \leq t \leq 1
$$

6. (15) Find the point(s) where $|\cos z|$ attains its maximum in the closed rectangle $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi$. What is the maximum value?
