다변수해석 학기말고사

2005년 6월 10 일 오후 7시 - 9시, 200점 만점

1 (40) Let $f=\left(f^{1}, f^{2}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
f^{1}(x, y, z)=x^{2}+y^{2}+z^{2}, \quad f^{2}(x, y, z)=x e^{y}+\sin z
$$

Let $P=(1,-1,0)$.
a) Find $D f(P)=f^{\prime}(P)$ as a matrix with respect to the standard bases of euclidean spaces.
b) Does there exist a smooth function $z=g(x, y)$ on a neighborhood of $x=1, y=-1$ such that $f(x, y, g(x, y))=f(P)=\left(2, e^{-1}\right)$?
c) Let $\gamma(t)=(1+a t,-1+b t, c t)$ be a line through P in the direction (a, b, c) and let $\Gamma(t)=(f \circ \gamma)(t)$. Find $\Gamma^{\prime}(0)$.
d) Let $d A$ be the area element of \mathbb{R}^{2}. Find $f^{*} d A$.

2 (15) Consider a 1-form

$$
\omega=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

on $\Omega=\mathbb{R}^{2} \backslash\{O\}$.
a) Show that ω is closed.
b) Let $S \subset \mathbb{R}^{2}$ be the unit circle centered at the origin. Evaluate $\int_{S} \omega$.

3 (30) a) Let M be a compact oriented k-dimensional manifold with boundary and ∂M be the boundary of M with the induced orientation. Let ω be a $(k-1)$-form on M. Then state the Stokes' theorem.
b) State the following classical theorems:

Green's theorem,
Divergence theorem,
Stokes' theorem.
c) Using the Stokes' theorem of a) prove the Divergence theorem.

4 (20)Prove that if $A \subset \mathbb{R}^{n}$ is an open set star-shaped with respect to 0 , then every closed 1 -form on A is exact.

5 (15) Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

6 (20) Let $S \subset \mathbb{R}^{3}$ be an ellipsoid $x^{2}+y^{2}+\frac{1}{4} z^{2}=1$. Let \vec{n} be the outward unit normal vector field on S. Given a vector field $\vec{F}=\left(x^{2}, e^{y}, z\right)$ evaluate

$$
\iint_{S}(\operatorname{curl} F \bullet \vec{n}) d A
$$

7 (20) Let $\Omega \subset \mathbb{R}^{2}$ be a compact manifold with boundary and \vec{n} be the outward unit normal vector field on $\partial \Omega$. Prove that if u is a smooth function on a neighborhood of Ω then

$$
\int_{\partial \Omega}(\nabla u \bullet \vec{n}) d s=\iint_{\Omega}\left(u_{x x}+u_{y y}\right) d A .
$$

8 (20) Suppose $f(z)=u(x, y)+i v(x, y)$ be a smooth complex valued function that satisfies $u_{x}=v_{y}$ and $u_{y}=-v_{x}$, where $z=x+i y$ and $d z=d x+i d y$. Let C be a smooth closed curve in \mathbb{R}^{2}. Show that $\int_{C} f(z) d z=0$.

9 (20) Consider the 2-form ω defined on $\mathbb{R}^{3} \backslash\{0\}$ by

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

Evaluate the integral $\int_{S} \omega$, where S is a sphere of radius 1 centered at $(1,1,1)$.

