다변수해석 중간고사

2005년 4월 20 일 오후 7시 - 9시, 150점 만점

1 (20) State the theorems precisely:
a) Inverse function theorem.
b) Implicit function theorem.
c) Fubini's theorem.
d) Partition of unity theorem.

2 (15) In each of the following cases the given set is a subset of \mathbb{R}. Describe the boundary, interior, and the closure of the set as subsets of \mathbb{R}.
a) A is the set of rational numbers in $[0,1]$. Describe $\partial A, A^{\circ}$ and \bar{A}.
b) $B=\{1,2,3\}$.
c) $C=\left\{\left.\frac{1}{n} \quad \right\rvert\, \quad n:\right.$ positive integers $\}$.

3 (10) Suppose $u=f(x, y), \quad x=s^{2}-t^{2}, \quad y=2 s t . \quad$ Assuming f is of class C^{2}, find $\frac{\partial^{2} u}{\partial s \partial t}$ in terms of s, t and the derivatives of f.

4 (15) Let $f(x, y)=x^{2}+5 x y$. At the point $(-2,1)$
a) find the directional derivative of f in the direction of the unit vector $\vec{v} /\|\vec{v}\|$, where $\vec{v}=(12,5)$.
b) what is the largest of the directional derivatives of f at this point, and in what direction does it occur?

5 (15)

$$
\begin{cases}x y^{2}+x z u+y v^{2} & =3 \\ u^{3} y z+2 x v-u^{2} v^{2} & =2 .\end{cases}
$$

a) Is it possible to solve for u and v in terms of x, y and z on a neighborhood of $(x, y, z)=(1,1,1),(u, v)=(1,1)$.
b) Express $d u$ and $d v$ as linear combinations of $d x, d y, d z$ with real coefficients at the point $(x, y, z, u, v)=(1,1,1,1,1)$.

6 (30) Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left(2 x+y^{2}, \quad y+y^{3}\right)$.
a) Let $\gamma(t)=\left(\sin t, t e^{t}\right)$ and let $\Gamma(t)=(f \circ \gamma)(t)$. Find $\Gamma^{\prime}(0)$.
b) Show that f is one-to-one on the rectangle $A=[0,1] \times[0,1]$.
c) Find the area of $f(A)$.

7 번 이하는 증명문제, $7-8$ 중 택 $1,9-10$ 중 택 일, 11-12중 택 일

7 (15) If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at $a \in \mathbb{R}^{m}$, then f is continuous at a.

8 A bounded function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous at $a \in \mathbb{R}^{m}$ if and only if the oscillation of f at a is zero.

9 (10) Let $A \subset \mathbb{R}^{n}$ be a closed rectangle and $g: A \rightarrow \mathbb{R}$ is a non-negative integrable function such that $\int_{A} g=0$. Show that $g=0$, a.e.

10 If f is a C^{2} real-valued function defined on an open $\Omega \in \mathbb{R}^{2}$ then the partial derivatives of f in mixed orders are equal, i.e., $D_{x} D_{y} f=D_{y} D_{x} f$ at every point of Ω.

11 (20) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function.
a) If $S \subset \mathbb{R}^{n}$ is an open convex set and $|\nabla f(x)| \leq M$ for every $x \in S$, then $|f(b)-f(a)| \leq$ $M|b-a|$ for all $a, b \in S$.
b) If $S \subset \mathbb{R}^{n}$ is an open convex set and $\nabla f(x)=0$ for all $x \in S$, then f is constant on S.

12 a) Suppose $Z \subset \mathbb{R}^{2}$ has content zero. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is bounded, then f is integrable on Z and $\int_{Z} f=0$,
b) Suppose that f is integrable on the set $S \subset \mathbb{R}^{2}$. If $g(x)=f(x)$ except for x in a set of content zero, then g is integrable on S and $\int_{S} g=\int_{S} f$.
c) Suppose that f is integrable on S and on T and that $S \cap T$ has content zero. Then f is integrable on $S \cup T$ and

$$
\int_{S \cup T} f=\int_{S} f+\int_{T} f
$$

