미분다양체론 기말고사

2005년 6월 14일, 19시 200점 만점

- 1 (25)For each of the following tell whether true or false:
 - a) Every smooth vector field on \mathbb{R}^1 is complete.
 - b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = 2x^2 + 4xy + y^4$. Then $f^{-1}(-1)$ is an embedded submanifold of \mathbb{R}^2 .
 - c) Möbius band is not orientable.
 - d) *n*-dimensional real projective space P^n is not orientable if *n* is even.
 - e) Dimension of $\Lambda^k(M^n)$ is $\binom{n}{k}$.

- 2 (10) Discuss the de Rham cohomology vector spaces $H^p_{deR}(S^2)$ for p = 0, 1, 2.
- 3 (20) In ℝ² we consider vector fields X, Y and a 1-form ω given by X = x ∂/∂x + y ∂/∂y, Y = y ∂/∂x x ∂/∂y and ω = ydx xdy.
 a) Compute L_XY.
 b) Compute L_Xω
- 4 (25)Let G = SL(2, ℝ) be the set of all 2 × 2 real matrices with determinant 1.
 a) Show that G is a closed subgroup of GL(2, ℝ). (This implies G is a Lie group.)
 b) Show that if {e^{tA} : t ∈ ℝ} is a 1-parameter subgroup of G then trace of A is zero.
- 5 (20)a)Suppose that a 3×3 real matrix A preserves inner product of any two vectors in ℝ³, that is, < AX AY >=< X Y > for all 3-dimensional column vectors X and Y. Show that A satisfies AA^t = I. We shall denote by O(3) the set of all such matrices.
 b) Find a basis of o(3) the Lie algebra of O(3).

6 (20)Prove that
$$\begin{pmatrix} -2 & 0\\ 0 & -1 \end{pmatrix}$$
 is not e^A for any $A \in gl(2, \mathbb{R})$.

- 7 (20) Let G be a Lie group and let \mathcal{G} be its Lie algebra. Suppose that $\{X_1, \ldots, X_d\}$ is a basis of a subalgebra of \mathcal{G} . Let H be a maximal connected integral manifold of $\{X_1, \ldots, X_d\}$ through the identity element e of G. Show that H is a Lie subgroup of G.
- 8 (20)a) Let $\omega = \frac{-ydx + xdy}{x^2 + y^2}$ and α be a 1-form on S^1 . Then there exists a constant $c \in \mathbb{R}$ such that $\alpha c\omega$ is exact.

b) What do you conclude from a) on H_{deR}^1 ?

- 9 (20)Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$. a) Show that ω is closed.
 - b) Evaluate $\int_M \omega$, where M is a sphere centered at (2,0,0) of radius 1.
- 10 (20)Suppose M is a compact oriented connected *n*-manifold with no boundary and θ is an (n-1)-form on M. Show that $d\theta$ is zero at some point of M.