미분다양체론 중간고사 2005년 4월 22일, 19시 150점 만점

1 (15) Let $x = (x_1, x_2)$ be a local coordinate system centered at $m \in M^2$ and $y = (y_1, y_2, y_3)$ be a local coordinate systems of N^3 . Let $\Psi : M \to N$ be a smooth mapping whose coordinate expression $y \circ \Psi \circ x^{-1}$ is given by

$$(x_1, x_2) \mapsto (\sin x_1, x_2 + (x_1)^3, x_1 + x_2).$$

Let $V \in T_m M$ be given by $V = 2\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2}$. Find $d\Psi_m(V)$.

- 2 (15) Consider the function f(x, y) = xy defined on ℝ² = {(x, y)}. In each of the following tell whether the level set is a smooth submanifold. Justify your answer.
 a) f⁻¹(0).
 b) f⁻¹(1).
- 3 (20) In $\mathbb{R}^2 = \{(x, y)\}$ let $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$ and $\omega = ydx xdy$. Find a) $d\omega$ b) $L_X\omega$ c) $dL_X\omega$ d) $L_Xd\omega$.
- 4 (15) Let M be a compact manifold of dimension n and $f: M \to \mathbb{R}$ be a smooth function. Show that there are at least two critical points, i.e., the points $P \in M$ where df(P) = 0.
 - 5-6 중 택일 (25점)

5

Let X_1 and X_2 be vector fields on \mathbb{R}^4 given by

$$X_1 = \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3}, \quad X_2 = \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_4}.$$

a) Is there a 2-dimensional submanifold M^2 of \mathbb{R}^4 such that for each $P \in M^2$, $X_1(P), X_2(P) \in T_P M$?

b) Is there a nonconstant function f in a neighborhood of $O \in \mathbb{R}^4$ such that $X_1 f = 0$ and $X_2 f = 0$?

6

On $\mathbb{R}^3 = \{(x, y, z)\}$ consider two vector fields $X = \frac{\partial}{\partial x} + 2x \frac{\partial}{\partial z}$ and $Y = \frac{\partial}{\partial y} + \{1 + e^x(x^2 + y - z)\}\frac{\partial}{\partial z}$. Does there exist a 2-dimensional integral manifold of the distribution spanned by X and Y? Explain why or why not. 다음 문제중 3개 선택 (각 20점)

7 Let X_1, \dots, X_c , $2 \le c \le n$, be smooth vector fields on M^n . Let $x = (x_1, \dots, x_n)$ be coordinate system such that $X_1 = \frac{\partial}{\partial x_1}$.

a) Let $Y_j = X_j - (X_j x_1) X_1$, $j = 2, \dots, c$. Show that Y_j , $j = 2, \dots, c$, is tangent to the submanifold $S = \{x_1 = 0\}$.

b) If X_1, \dots, X_c is involutive then Y_2, \dots, Y_c is involutive on S.

- 8 Completeness of vector fields: Tell yes or no. Justify your answers (give proof for yes and counter-example for no).
 - a) Is every smooth vector field on the real line complete?
 - b) Is every smooth vector field on a compact manifold complete?
- **9** $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4\}$ satisfying

$$\operatorname{rank} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = 1$$

is a three dimensional submanifold of \mathbb{R}^4 . Prove :

10

Define a 2-form on \mathbb{R}^{2n} by

 $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + \dots + dx_{2n-1} \wedge dx_{2n}.$

This is called the standard symplectic form on \mathbb{R}^{2n} . Compute $\omega^n = \omega \wedge \cdots \wedge \omega$, *n*-times wedge product.