미분다양체론 중간고사

2005년 4월 22 일, 19시 150점 만점

1 (15) Let $x=\left(x_{1}, x_{2}\right)$ be a local coordinate system centered at $m \in M^{2}$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ be a local coordinate systems of N^{3}. Let $\Psi: M \rightarrow N$ be a smooth mapping whose coordinate expression $y \circ \Psi \circ x^{-1}$ is given by

$$
\left(x_{1}, x_{2}\right) \mapsto\left(\sin x_{1}, x_{2}+\left(x_{1}\right)^{3}, x_{1}+x_{2}\right)
$$

Let $V \in T_{m} M$ be given by $V=2 \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}$. Find $d \Psi_{m}(V)$.

2 (15) Consider the function $f(x, y)=x y$ defined on $\mathbb{R}^{2}=\{(x, y)\}$. In each of the following tell whether the level set is a smooth submanifold. Justify your answer.
a) $f^{-1}(0)$.
b) $f^{-1}(1)$.

3 (20) In $\mathbb{R}^{2}=\{(x, y)\}$ let $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $\omega=y d x-x d y$. Find
a) $d \omega$
b) $L_{X} \omega$
c) $d L_{X} \omega$
d) $L_{X} d \omega$.

4 (15) Let M be a compact manifold of dimension n and $f: M \rightarrow \mathbb{R}$ be a smooth function. Show that there are at least two critical points, i.e., the points $P \in M$ where $d f(P)=0$.

5-6 중 택일 (25점)

5

Let X_{1} and X_{2} be vector fields on \mathbb{R}^{4} given by

$$
X_{1}=\frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}, \quad X_{2}=\frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{4}}
$$

a) Is there a 2-dimensional submanifold M^{2} of \mathbb{R}^{4} such that for each $P \in M^{2}$, $X_{1}(P), X_{2}(P) \in T_{P} M ?$
b)Is there a nonconstant function f in a neighborhood of $O \in \mathbb{R}^{4}$ such that $X_{1} f=0$ and $X_{2} f=0$?

6
On $\mathbb{R}^{3}=\{(x, y, z)\}$ consider two vector fields $X=\frac{\partial}{\partial x}+2 x \frac{\partial}{\partial z}$ and $Y=\frac{\partial}{\partial y}+\left\{1+e^{x}\left(x^{2}+y-z\right)\right\} \frac{\partial}{\partial z}$. Does there exist a 2 -dimensional integral manifold of the distribution spanned by X and Y ? Explain why or why not.

다음 문제중 3 개 선택 (각 20점)

7 Let $X_{1}, \cdots, X_{c}, \quad 2 \leq c \leq n$, be smooth vector fields on M^{n}. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be coordinate system such that $X_{1}=\frac{\partial}{\partial x_{1}}$.
a) Let $Y_{j}=X_{j}-\left(X_{j} x_{1}\right) X_{1}, \quad j=2, \cdots, c$. Show that $Y_{j}, \quad j=2, \cdots, c$, is tangent to the submanifold $S=\left\{x_{1}=0\right\}$.
b) If X_{1}, \cdots, X_{c} is involutive then Y_{2}, \cdots, Y_{c} is involutive on S.

8 Completeness of vector fields: Tell yes or no. Justify your answers (give proof for yes and counter-example for no).
a) Is every smooth vector field on the real line complete?
b) Is every smooth vector field on a compact manifold complete?
$9\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}\right\}$ satisfying

$$
\operatorname{rank}\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=1
$$

is a three dimensional submanifold of \mathbb{R}^{4}.Prove :

10
Define a 2 -form on $\mathbb{R}^{2 n}$ by

$$
\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}+\cdots+d x_{2 n-1} \wedge d x_{2 n}
$$

This is called the standard symplectic form on $\mathbb{R}^{2 n}$. Compute $\omega^{n}=\omega \wedge \cdots \wedge \omega, n$-times wedge product.

