Complex analysis Final Exam

December 12th, 2008

- 1 (15 pts = 7+8) Find all the values of
 - a) 6^{th} root of -8. b) i^i .

2 (20 pts = 7+7+6) Mappings:

- a) Find the image of $\{z : | \text{ Im } z| < \frac{\pi}{3}\}$ under the exponential function $w = e^z$.
- b) Find the image of the line y = x under the mapping $w = \frac{z-1}{z+1}$.

c) If f(z) = u(x, y) + iv(x, y) is analytic and $f'(z) \neq 0$ at any point of its domain, then the level curves of u intersect perpendicularly with the level curves of v.

3 (20 pts = 5+10+5) Laurent series:

Let f(z) be analytic on a region that contains a closed annulus $r_1 \leq |z - a| \leq r_2$. Then a) for any z in the interior of the annulus we have $f(z) = f_1(z) + f_2(z)$, where

$$f_1(z) = \frac{1}{2\pi i} \int_{|\zeta-a|=r_2} \frac{f(\zeta)d\zeta}{\zeta-z}, \qquad f_2(z) = -\frac{1}{2\pi i} \int_{|\zeta-a|=r_1} \frac{f(\zeta)d\zeta}{\zeta-z}.$$

b) $f_2(z) = \sum_{k=1}^N \frac{b_k}{(z-a)^k} + \sigma_N(z), \quad \text{where}$
 $b_k = \frac{1}{2\pi i} \int_{|\zeta-a|=r_1} (\zeta-a)^{k-1} f(\zeta)d\zeta, \qquad \sigma_N(z) = \frac{1}{2\pi i} \int_{|\zeta-a|=r_1} \frac{(\zeta-a)^N f(\zeta)d\zeta}{(z-a)^N(z-\zeta)}.$
c) Let $r > r_1$. Then $\sigma_N(z) \to 0$ uniformly on the closed set $|z-a| \ge r > r_1.$

4 (20 pts=10+10) Find the residue at each pole:

a)
$$\frac{\cosh(\pi z)}{z^2(z^2+1)}$$

b)
$$\frac{\log z}{(z^2+1)^2}$$

- 5 (10) Prove that $f(z) := 3z^{100} e^z$ has 100 roots in the unit disk |z| < 1 and all of them are simple zeros.
- **6** (10) Let f(z) be analytic on a region Ω containing a circle |z| = 2 and its interior. If f(z) has a zero of order m at $\frac{\pi i}{2}$ and no other zeros in Ω . Evaluate $\int_{|z|=2} \frac{zf'(z)}{f(z)} dz$.

continues on next page

7 (25 pts = 10+15)Laplace transform:

a) Let $F(s) = \frac{4s+6}{s^2(s+2)(s-1)}$. Find $f(t) = \mathcal{L}^{-1}(F(s))$ by contour integral.

b) By the Laplace transform method solve the following initial value problem of the system of differential equations for x(t) and y(t):

$$x'' - 2x' + 3y' + 2y = 4,$$

$$2y' - x' + 3y = 0,$$

$$x(0) = x'(0) = y(0) = 0.$$

8 (20 pts = 10+10) Linear Fractional Tranformations:

a) For a linear fractional transformation T, find T(2) if

$$T(1) = 1 + i$$
, $T(0) = -i$, $T(-i) = 0$.

b) A fixed point of a transformation w = f(z) is a point z_0 such that $f(z_0) = z_0$. Show that every linear fractional transformation, with the exception of the identity transformation f(z) = z, has at most two fixed points in the extended plane.

9 (25 pts = 15 for a, b, c + 10 for d.)

a) Show that $\pi \cot \pi z$ has residue +1 at each of the poles $z = 0, \pm 1, \pm 2, \ldots$. b) For each positive integer N let C_N be the square with vertices at $\pm (N + \frac{1}{2}) \pm i(N + \frac{1}{2})$. Then $\pi \cot \pi z$ is bounded on C_N , the bound being independent of N. c) Consider $\int_{C_N} \frac{\pi \cot \pi z}{z^2} dz$, show that the integral tends to zero as $N \to \infty$. d) Evaluate $\sum_{1}^{\infty} \frac{1}{n^2}$.

10 (15 pts) By analogy with the above, integrate $\frac{\pi \csc \pi z}{z^2}$ around C_N and evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

End of problem set. 180 points total.