Complex analysis Final Exam

December 12th, 2008

1 (15 pts $=7+8)$ Find all the values of
a) $6^{\text {th }}$ root of -8 .
b) i^{i}.

2 (20 pts $=7+7+6$) Mappings:
a) Find the image of $\left\{z:|\operatorname{Im} z|<\frac{\pi}{3}\right\}$ under the exponential function $w=e^{z}$.
b) Find the image of the line $y=x$ under the mapping $w=\frac{z-1}{z+1}$.
c) If $f(z)=u(x, y)+i v(x, y)$ is analytic and $f^{\prime}(z) \neq 0$ at any point of its domain, then the level curves of u intersect perpendicularly with the level curves of v.

3 (20 pts $=5+10+5$) Laurent series:
Let $f(z)$ be analytic on a region that contains a closed annulus $r_{1} \leq|z-a| \leq r_{2}$. Then a) for any z in the interior of the annulus we have $f(z)=f_{1}(z)+f_{2}(z)$, where

$$
f_{1}(z)=\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{2}} \frac{f(\zeta) d \zeta}{\zeta-z}, \quad f_{2}(z)=-\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{1}} \frac{f(\zeta) d \zeta}{\zeta-z} .
$$

b) $f_{2}(z)=\sum_{k=1}^{N} \frac{b_{k}}{(z-a)^{k}}+\sigma_{N}(z)$, where

$$
b_{k}=\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{1}}(\zeta-a)^{k-1} f(\zeta) d \zeta, \quad \sigma_{N}(z)=\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{1}} \frac{(\zeta-a)^{N} f(\zeta) d \zeta}{(z-a)^{N}(z-\zeta)} .
$$

c) Let $r>r_{1}$. Then $\sigma_{N}(z) \rightarrow 0$ uniformly on the closed set $|z-a| \geq r>r_{1}$.

4 (20 pts $=10+10)$ Find the residue at each pole:
a) $\frac{\cosh (\pi z)}{z^{2}\left(z^{2}+1\right)}$
b) $\frac{\log z}{\left(z^{2}+1\right)^{2}}$

5 (10) Prove that $f(z):=3 z^{100}-e^{z}$ has 100 roots in the unit disk $|z|<1$ and all of them are simple zeros.

6 (10) Let $f(z)$ be analytic on a region Ω containing a circle $|z|=2$ and its interior. If $f(z)$ has a zero of order m at $\frac{\pi i}{2}$ and no other zeros in Ω. Evaluate $\int_{|z|=2} \frac{z f^{\prime}(z)}{f(z)} d z$.
continues on next page

7 (25 pts $=10+15)$ Laplace transform:
a) Let $F(s)=\frac{4 s+6}{s^{2}(s+2)(s-1)}$. Find $f(t)=\mathcal{L}^{-1}(F(s))$ by contour integral.
b) By the Laplace transform method solve the following initial value problem of the system of differential equations for $x(t)$ and $y(t)$:

$$
\begin{array}{r}
x^{\prime \prime}-2 x^{\prime}+3 y^{\prime}+2 y=4, \\
2 y^{\prime}-x^{\prime}+3 y=0, \\
x(0)=x^{\prime}(0)=y(0)=0 .
\end{array}
$$

8 (20 pts $=10+10$) Linear Fractional Tranformations:
a) For a linear fractional transformation T, find $T(2)$ if

$$
T(1)=1+i, \quad T(0)=-i, \quad T(-i)=0 .
$$

b) A fixed point of a transformation $w=f(z)$ is a point z_{0} such that $f\left(z_{0}\right)=z_{0}$. Show that every linear fractional transformation, with the exception of the identity transformation $f(z)=z$, has at most two fixed points in the extended plane.

9 (25 pts $=15$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}+10$ for d.$)$
a) Show that $\pi \cot \pi z \quad$ has residue +1 at each of the poles $z=0, \pm 1, \pm 2, \ldots$.
b) For each positive integer N let C_{N} be the square with vertices at $\pm\left(N+\frac{1}{2}\right) \pm i\left(N+\frac{1}{2}\right)$. Then $\pi \cot \pi z \quad$ is bounded on C_{N}, the bound being independent of N.
c) Consider $\int_{C_{N}} \frac{\pi \cot \pi z}{z^{2}} d z$, show that the integral tends to zero as $N \rightarrow \infty$.
d) Evaluate $\sum_{1}^{\infty} \frac{1}{n^{2}}$.

10 (15 pts) By analogy with the above, integrate $\frac{\pi \csc \pi z}{z^{2}}$ around C_{N} and evaluate $\sum_{0}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$.

End of problem set. 180 points total.

