Complex analysis (Undergrad) Midterm Exam

October 17th, 2008
$1(5+5+5=15 \mathrm{pts})$ State the theorem with precise hypotheses and conclusions:
a) Cauchy-Goursat theorem.
b) Morera's theorem.
c) Liouville's theorem.
$2(5+5+5=15)$ Let $u(x, y)=\left(e^{y}+e^{-y}\right) \cos x$.
a) Show that u is harmonic in \mathbb{C}.
b) Find a conjugate harmonic function.
c) Evaluate

$$
\iint_{|z|<\pi} u(x, y) d x d y
$$

$3(5+5+10=20)$ Evaluate the integral $\int_{C} \frac{\sin (\pi z) d z}{\left(z+\frac{3}{2}\right)(z-4)^{2}}$, where
a) C is the circle $|z|=1$.
b) C is the circle $|z|=3$.
c) C is the circle $|z|=5$.
$4(10+10=20)$ Prove:
a) Suppose that f is entire and $|f(z)| \leq M|z|^{n}$ whenever $|z| \geq R$, for some positive numbers M and R. Then $f^{(n)}$ is constant.
b) If $u(x, y)$ is positive-valued and harmonic at all points in \mathbb{R}^{2} what can you conclude about u ? Justify your answer.

5 (10) Evaluate $\int_{|z-i|=2} \frac{\log (z+2)}{z-2 i} d z$.
$6(10+10=20)$ Let D be the unit disk $|z|<1$ and $f: \bar{D} \rightarrow \bar{D}$ be analytic. Prove
a) If $|f(z)|$ is constant then f is constant.
b) Suppose that $\left|f\left(e^{i \theta}\right)\right|=1$ for all $\theta \in[0,2 \pi]$ and f has no zeros in D. Show that f is constant.
$7(10+10=20)$ Define a complex-valued function $g(z)$ defined on $|z| \neq 1$ by

$$
g(z)=\int_{|\zeta|=1} \frac{e^{2 \zeta}}{(\zeta-z)^{2}} d \zeta
$$

a) Find $g^{\prime}(z)$.
b) Show that g is discontinuous at $z=1$ by finding $\lim _{t \rightarrow 1^{-}} g(t)$ and $\lim _{t \rightarrow 1^{+}} g(t)$, where t is real.

End of problem set. 120 points total.

