Complex analysis exercises on Real Integrals

November 21st, 2008

1 (15pts $\times 4=60$) Evaluate the integrals. Show the convergence.
a) $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$.
b) $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x$.
c) $\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x$.
d) $\int_{0}^{\infty} \frac{\sin a x}{x} d x \quad(a>0)$.

2 (10 pts) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.

3 (10 pts $\times 3=30$) Follow the steps below to evalutae the "Fresnel integrals":

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

a) By integrating the function $\exp \left(i z^{2}\right)$ around the positively oriented boundary of the sector $0 \leq r \leq R, \quad 0 \leq \theta \leq \pi / 4$ and appealing to the Cauchy-Goursat theorem, show that

$$
\int_{0}^{R} \cos \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z
$$

and

$$
\int_{0}^{R} \sin \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z
$$

where C_{R} is the arc $z=R e^{i \theta}, \quad 0 \leq \theta \leq \pi / 4$.
b) Show that the value of the integral along the arc C_{R} in part (a) tends to zero as R tends to infinity by obtaining the inequality

$$
\left|\int_{C_{R}} e^{i z^{2}} d z\right| \leq \frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin \phi} d \phi
$$

and then referring to the Jordan's inequality.
c) Use the results in (a) and (b), together with the known integration formula $\int_{0}^{\infty} e^{-x^{2}} d x=$ $\frac{\sqrt{\pi}}{2}$, to complete the Fresnel integrals.

End of problem set. 100 points total.

