

다변수해석학 중간고사

2008. 4.19

문제 1-9 제출, 문제 10-17 화요일 4/22 수업시간에 제출

1 State the theorem. (5+5+5=15 pts)

- a) Implicit function theorem
- b) Fubini theorem
- c) Partition of unity

2 Evaluate: (5+10+15=30 pts)

- a) $\int_{-\infty}^{\infty} e^{-x^2} dx.$
- b) For $x > 0$, find

$$\frac{d}{dx} \int_{x^2}^{x^3} \frac{1}{y} e^{xy^2} dy.$$

c) Let R be the region in the first quadrant that is bounded by the hyperbolas $xy = 1$, $xy = 3$, $x^2 - y^2 = 1$, and $x^2 - y^2 = 4$. Express the integral $\int_R (x^2 + y^2) dx dy$ in terms of the new variables $u = xy$ and $v = x^2 - y^2$. Then evaluate the integral.

3 (5+15=20 pts) Let $\gamma(t) = (\cosh t, \sinh t - 1)$ be a curve in \mathbb{R}^2 . Recall $\cosh t = \frac{e^t + e^{-t}}{2}$.

- a) Find $\gamma'(t)$.
- b) Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the map $f(x, y) = (ye^x, \sin(x+y), y^2 + 1)$ and let $\Gamma(t) = (f \circ \gamma)(t)$. Find $\Gamma'(0)$.

4 (10+10=20 pts) a) Let A be an $n \times n$ matrix with $\det A \neq 0$. Show that there exist positive numbers m and M such that $m\|v\| \leq \|Av\| \leq M\|v\|$ for any non-zero vector $v = (v_1, \dots, v_n)^t \in \mathbb{R}^n$.

b) Suppose that $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is continuously differentiable and that $Df(a) \neq 0$. Show that f is one-to-one on a neighborhood of a .

5 (12 pts) Suppose that $f(x, y, z)$ is C^∞ and $f(x, 0, 0) = 0$. Then there exist functions g and h such that $f(x, y, z) = yg(x, y, z) + zh(x, y, z)$: Prove.

6 (10 pts) If $f(x, y)$ is a C^2 real-valued function, then $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. Recall $\frac{\partial^2 f}{\partial x \partial y} := \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$.

7 (13 pts) Let $A \subset \mathbb{R}^n$ be a rectangle and $f : A \rightarrow \mathbb{R}$ be a non-negative function. If $\int_A f = 0$, show that $\{x : f(x) \neq 0\}$ has measure 0.

8 (10+5=15 pts) Let

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational.} \end{cases}$$

- a) Find the oscillation of $h(x) := \cos x + f(x) \sin x$.

b) Discuss the continuity of $h(x)$.

9 (15 pts) Find the points of the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$ which are closest to and farthest from the plane $x + y + z = 10$.

class exam total 150 pts

..... take home

10 Let $f(x, y, z) = x \sin z - z \sin y$.

- Find the Taylor expansion up to degree 5.
- Find the hessian of f at $(0, 0, 0)$. Recall the hessian the symmetric matrix of the second derivatives.
- Tell whether each of the following points is a critical point. If so, classify the critical point: $(0, 0, 0)$, $(-1, \pi/2, 0)$.

11 For the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by

$$f(x, y) = \begin{cases} \frac{x^2 y \sqrt{x^2 + y^2}}{x^4 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

- Show that f is continuous at $(0, 0)$.
- Show that $D_1 f(0, 0) = 0$, $D_2 f(0, 0) = 0$.
- Is f differentiable at $(0, 0)$? Prove or disprove.

12 Let $a(x), b(x), g(x, y)$ be C^∞ functions. Show that

$$\frac{d}{dx} \int_{a(x)}^{b(x)} g(x, y) dy = g(x, b(x))b'(x) - g(x, a(x))a'(x) + \int_{a(x)}^{b(x)} D_1 g(x, y) dy.$$

13 Assuming the implicit function theorem prove the inverse function theorem.

14 Let $f : [0, 1]^2 \rightarrow \mathbb{R}$ be a continuous function such that $\int_{[0,1] \times [0,1]} f g = 0$ for any $g : [0, 1]^2 \rightarrow \mathbb{R}$. Show that f is constantly zero.

15 Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function and let $V \in \mathbb{R}^n$. Define $D_V f(a) = \lim_{t \rightarrow 0} \frac{f(a+tV) - f(a)}{t}$ if the limit exists. Show that if f is differentiable at a then $D_V f(a) = Df(a)V$.

16 Let $f : [a, b] \rightarrow \mathbb{R}$ be an increasing function. Show that $\{x | f \text{ is discontinuous at } x\}$ has measure 0.

17 Find the volume of the unit ball $\|x\| \leq 1$ in \mathbb{R}^n , for $n = 1, 2, 3, 4$.

end of problem set