Complex analysis (Grad) Quiz 1

October 7th, 2008

1 If f^{\prime} exists at z_{0} then f is continuous at z_{0}.

2 Suppose that $f(z)$ is holomorphic on a closed curve γ. Show that

$$
\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z
$$

is purely imaginary.

3 Compute

$$
\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}}
$$

under the condition $|a| \neq \rho$.

4 If $f(z)$ is analytic in the closed rectangle $R=[a, b] \times[c, d]$. Without assuming the continuity of $f^{\prime}(z)$ prove that $\int_{\partial R} f(z) d z=0$.

5 State and prove the Schwarz lemma.

6 Determine explicitly the largest disk about the origin whose image under the mapping $w=e^{z}$ is one-to-one.

7 If $f(z)$ is a holomorphic mapping of closed unit disk $|z| \leq 1$ into itself. Show that

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

8 Find the poles and residues of $\cot z$.

9 Evaluate

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x
$$

10
(Bergman kernel) If $f(z)$ is holomorphic and bounded for $|z|<1$ and if $|\zeta|<1$, then

$$
f(\zeta)=\frac{1}{\pi} \iint_{|z|<1} \frac{f(z) d x d y}{(1-\bar{z} \zeta)^{2}} .
$$

End of problem set .

