Complex analysis (Grad) Final Exam

December 15th, 2008

1 Taylor and Laurent series:
$\left.{ }^{*} \mathrm{a}\right)(10 \mathrm{pts})$ If f is holomorphic in an open neighborhood of the closed disk $|z-a| \leq R$ and z is a point in the interior of the disk, then we have

$$
f(z)=f(a)+\frac{f^{\prime}(a)}{1!}(z-a)+\cdots+\frac{f^{(n)}(a)}{n!}(z-a)^{n}+f_{n+1}(z)(z-a)^{n+1},
$$

where

$$
f_{n+1}(z)=\frac{1}{2 \pi i} \int_{|\zeta-a|=R} \frac{f(\zeta) d \zeta}{(\zeta-a)^{n+1}(\zeta-z)} .
$$

*b) (10 pts) Let f be the same as in a). Then its Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(z-a)^{k}$ converges uniformly on compact subsets of the disk $|z-a|<R$.
c) Let f be holomorphic in a region that contains the annulus $r_{1}<|z-a|<r_{2}$. Then for any point z in the interior of the annulus we have $f(z)=f_{1}(z)+f_{2}(z)$, where

$$
f_{1}(z)=\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{2}} \frac{f(\zeta) d \zeta}{\zeta-z}, \quad \text { and } f_{2}(z)=-\frac{1}{2 \pi i} \int_{|\zeta-a|=r_{1}} \frac{f(\zeta) d \zeta}{\zeta-z} .
$$

d) Express f_{1} and f_{2} as power series in $(z-a)$ and $\frac{1}{z-a}$, respectively, and discuss the convergence.

2 Partial fractions:
a) State and prove the Mittag-Leffler theorem.
b) Prove that $\frac{\pi^{2}}{\sin ^{2}(\pi z)}=\sum_{-\infty}^{\infty} \frac{1}{(z-n)^{2}}$.
c) By differentiating b) show that

$$
\pi \cot \pi z=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
$$

d) Show that

$$
\begin{aligned}
\frac{\pi}{\sin \pi z} & =\lim _{m \rightarrow \infty} \sum_{-m}^{m}(-1)^{n} \frac{1}{z-n} \\
& =\frac{1}{z}+\sum_{1}^{\infty}(-1)^{n} \frac{2 z}{z^{2}-n^{2}}
\end{aligned}
$$

e) Comparing coefficients in the Laurent developments of $\cot \pi z$ and of its expresson as a sum of partial fractions, evaluate $\sum_{1}^{\infty} \frac{1}{n^{2}}$.
$\left.*_{\mathrm{f}}\right)(10 \mathrm{pts})$ Find the partial fraction development of $\frac{1}{\cos \pi z}$ and evaluate $1-1 / 3+1 / 5-$ $1 / 7 \cdots$.

3 a) Show that $\sin \pi z=\pi z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}$.
b) Prove that the right hand side of a) converges absolutely for any z. Therefore, we can change the order of multiplication: multiplying the terms $\pm n$ as a pair, then we have

$$
\sin \pi z=\pi z \prod_{1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

4 Gamma function: a) We define an entire function with simple zeros at negative integers: $G(z)=\prod_{1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}$. Then

$$
z G(z) G(-z)=\frac{\sin \pi z}{\pi}
$$

b) $G(z-1)=e^{\gamma} z G(z)$ defines the Euler constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right)
$$

Let $H(z):=G(z) e^{\gamma z}$ and we define

$$
\begin{aligned}
\Gamma(z) & :=1 /[z H(z)] \\
& =\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}
\end{aligned}
$$

Show that

$$
\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}
$$

c) By using the Stirling's formula prove $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$.

5 a) Show that $\Gamma(z+1)=z \Gamma(z)$.
b) $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}$.
c) Evaluate $\Gamma(1 / 2), \quad \Gamma(1), \quad \Gamma(2)$.
d) Find the residue of $\Gamma(z)$ at 0 , and at -1 .
$6 * a)(10 \mathrm{pts})$ Define the genus and the order for an entire function.
$\left.{ }^{*} \mathrm{~b}\right)(10 \mathrm{pts})$ Find the genus and the order of $\sin \left(z^{2}\right)$.

7 Riemann Zeta Function:
a) Show that the series $\zeta(s):=\sum_{n=1}^{\infty} n^{-s}, s=\sigma+i t$, converges absolutely and uniformly on compact subsets of the half plane $\sigma>1$, and therefore, $\zeta(s)$ is holomorphic in $\sigma>1$.
b) For $\sigma>1$ show that

$$
\zeta(s)=\prod_{n=1}^{\infty}\left(1-\frac{1}{p_{n}^{s}}\right)^{-1}
$$

where p_{1}, p_{2}, \cdots are the prime numbers.
c) Show that $\int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z$ is an entire function of s, where C is the infinite path beginning and ending near the positive real axis and turns around the origin along a positively oriented circle of a small radius $\rho<2 \pi$. Here $(-z)^{s-1}$ is defined on the complement of the positive real axis as $e^{(s-1) \log (-z)}$ with $-\pi<\operatorname{Im} \log (-z)<\pi$.
(Hint: For any real number $A>0$ let C_{A} be the finite path $\{z \in C: \operatorname{Re} z \leq A\}$. Then the integral over C_{A} is an entire function of s and the integral over $C \backslash C_{A}$ converges uniformly to zero on $|s| \leq R$ as $A \rightarrow \infty$.)
$\left.{ }^{*} \mathrm{~d}\right)(10 \mathrm{pts})$ Recalling $\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x$, show that for $\sigma>1$,

$$
\zeta(s)=-\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

*e)(10 pts) Show that

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s) .
$$

f) Find the residues at the poles of $\zeta(s)$ and the zeros of $\zeta(s)$ in $\sigma>1$ and in $\sigma<0$.
g) Discuss the Riemann hypothesis.

8 Normal families:
a) State and prove the Arzela-Ascoli theorem.
b) Let \mathcal{F} be a family of holomorphic functions of a domain Ω into a bounded domain $\tilde{\Omega}$. Show that \mathcal{F} is a normal family.
c) Show that $\left\{f^{\prime}: f \in \mathcal{F}\right\}$, where \mathcal{F} is as in b), is a normal family.
${ }^{*}$ d)(10 pts) Let Ω be a simply connected domain and f be a nowhere zero holomorphic function on Ω. Show that there are holomorphic functions ϕ and g on Ω such that $e^{\phi}=f$, and $g^{2}=f$, respectively.
${ }^{*}$ e)(10 pts) Let Ω be an unbounded simply connected domain which is not the whole plane. Let $z_{0} \in \Omega$. Construct a univalent (one-to-one holomorphic) function f from Ω into the open unit disk U such that $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)>0$. Justify your answer.
$\left.*_{\mathrm{f}}\right)(10 \mathrm{pts})$ Let H be the upper half plane $y>0$ and U be the open unit disk. Find the Riemann map $f:(H, i) \rightarrow(U, 0)$, that is, a one-to-one, onto, holomorphic map $f: H \rightarrow U$ such that $f(i)=0, f^{\prime}(i)>0$.
g) Assuming all the above results prove the Riemann mapping theorem.

9 * (15 pts) Find a meromorphic function with the poles of the following singular part: Express as an infinite series that converges uniformly on compact sets after omitting finite number of terms.
*a) $\frac{1}{z-n \log n}, n=1,2,3 \ldots$
*b) $\left(\frac{1}{z-\sqrt{n}}\right)^{2}, n=1,2,3 \ldots$.
$10{ }^{*}(20 \mathrm{pts}=7+7+6)$ Find an entire function with
*a) simple zeros at $n \log n, \quad n=1,2,3, \ldots$, and no other zeros

* b) double zeros at $0,1,2,3, \ldots$, and no other zeros
${ }^{*}$ c) simple zeros at $n^{2}, \quad n=0,1,2, \ldots$, and no other zeros.

11 * (15 pts) Let $f(z)$ be a holomorphic function in a region that contains the closed unit disk $|z| \leq 1$. Suppose that f has zeros at $a_{j}, j=1, \ldots, N$, in the interior to the unit circle $|z|=1$ and no other zeros.
*a) Construct a holomorphic function $F(z)$ that has no zeros in $|z| \leq 1$ and such that $|F(z)|=|f(z)|$ on the circle $|z|=1$.
*b) Express $|f(0)|$ in terms of the boundary values $f\left(e^{i \theta}\right)$ and a_{j} 's.
$12 *(15 \mathrm{pts})$ Using the probability integral

$$
\int_{0}^{\infty} e^{-t^{2}} d t=\frac{1}{2} \int_{0}^{\infty} e^{-x} x^{-1 / 2} d x=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi},
$$

evaluate the Fresnel integrals $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$, and $\int_{0}^{\infty} \cos \left(x^{2}\right) d x$.

13 *(15 pts) For a positive integer N let C_{N} be the the square with vertices at $\pm\left(N+\frac{1}{2}\right) \pm i\left(N+\frac{1}{2}\right)$. By evaluating the integral $\int_{C_{N}} \frac{\pi \csc \pi z}{z^{2}} d z$ and by taking the limit $N \rightarrow \infty$, evaluate $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$.

End of problem set. Total 180 points.

