Complex analysis (Grad) Midterm Exam

October 21, 2008

(10+10=20 pts) Let D be the open unit disk |z| < 1.
 a) Suppose that φ : D → D is holomorphic, |φ(z)| = 1 if |z| = 1, and that φ has no zero in D. What is your conclusion on φ ? Justify your answer.
 b) Suppose that f : D → D is holomorphic, |f(z)| = 1 if |z| = 1. If f has zero of order 2 at a ∈ D and no other zeros. What do you conclude on f ? Justify your answer.

- 2 (10) Let $f(z) = 2z^2 + z^3$. Prove that there exist open neighborhoods U and V of the origin such that f maps U onto V in two-to-one manner (two-to-one except for f(0) = 0).
- **3** (10+5=15) Reflection principle:
 - Let $\Omega^+ := \{(x, y) : y > x^2, |z| < \epsilon\}$, and $\sigma := \{(x, y) : y = x^2, |z| < \epsilon\}$, where z = x + iy and $\epsilon > 0$ is a sufficiently small constant.
 - a) For a point $z \in \Omega^+$ find the reflection point z^* .
 - b) State the reflection principle for holomorphic functions on Ω^+ .
- 4 (10+10=20) Poisson kernel: Let D be the open unit disk |z| < 1.
 a) Let f be holomorphic in D
 and for any z ∈ D let z* be the reflection point of z with respect to the boundary of D. Show that

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \left(\frac{1}{\zeta - z} - \frac{1}{\zeta - z^*} \right) f(\zeta) d\zeta.$$

b) By using a) prove the Poisson integral formula: If u is harmonic in \overline{D} then for any $z = re^{i\phi} \in D$

$$u(re^{i\phi}) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) P(r, \phi - \theta) d\theta,$$

where $P(r,t) = \frac{1-r^2}{1-2r\cos t + r^2}$.

- 5 (10+5+10=25) Let $u(r,\theta) = \log r$.
 - a) Express *du and d*du in terms of x and y.
 - b) Show that u is harmonic.

c) Let $\Omega := \mathbb{C} \setminus \{0, 2\}$. Find $\int_{\gamma} *du$ for each cycle γ of the homology basis of Ω . Discuss the existence of harmonic conjugates in Ω .

6 (10+10+10=30) Harmonic functions;

a) If u and u^2 are both harmonic in a domain $\Omega \subset \mathbb{C}$, what do you conclude on u? Justify your answer.

b) If u_1, u_2, \cdots , are harmonic in Ω and $\{u_k\}$ converges to u_0 uniformly on each compact subset of Ω , then prove u_0 is harmonic.

c) If u is harmonic and bounded in $0 < |z| < \rho$, show that the origin is a removable singularity in the sense that u becomes harmonic in $|z| < \rho$ when u(0) is properly defined.

End of problem set. Total 120 points.