Complex analysis (Grad) Midterm Exam

October 21, 2008

1 ($10+10=20 \mathrm{pts}$) Let D be the open unit disk $|z|<1$.
a) Suppose that $\phi: \bar{D} \rightarrow \bar{D}$ is holomorphic, $|\phi(z)|=1$ if $|z|=1$, and that ϕ has no zero in D. What is your conclusion on ϕ ? Justify your answer.
b) Suppose that $f: \bar{D} \rightarrow \bar{D}$ is holomorphic, $|f(z)|=1$ if $|z|=1$. If f has zero of order 2 at $a \in D$ and no other zeros. What do you conclude on f ? Justify your answer.

2 (10) Let $f(z)=2 z^{2}+z^{3}$. Prove that there exist open neighborhoods U and V of the origin such that f maps U onto V in two-to-one manner (two-to-one except for $f(0)=0$).

3 ($10+5=15$) Reflection principle:
Let $\Omega^{+}:=\left\{(x, y): y>x^{2}, \quad|z|<\epsilon\right\}$, and $\sigma:=\left\{(x, y): y=x^{2}, \quad|z|<\epsilon\right\}$, where $z=x+i y$ and $\epsilon>0$ is a sufficiently small constant.
a) For a point $z \in \Omega^{+}$find the reflection point z^{*}.
b) State the reflection principle for holomorphic functions on Ω^{+}.
$4(10+10=20)$ Poisson kernel: Let D be the open unit disk $|z|<1$.
a) Let f be holomorphic in \bar{D} and for any $z \in D$ let z^{*} be the reflection point of z with respect to the boundary of D. Show that

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=1}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-z^{*}}\right) f(\zeta) d \zeta .
$$

b) By using a) prove the Poisson integral formula: If u is harmonic in \bar{D} then for any $z=r e^{i \phi} \in D$

$$
u\left(r e^{i \phi}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \theta}\right) P(r, \phi-\theta) d \theta
$$

where $P(r, t)=\frac{1-r^{2}}{1-2 r \cos t+r^{2}}$.
$5(10+5+10=25)$ Let $u(r, \theta)=\log r$.
a) Express $* d u$ and $d * d u$ in terms of x and y.
b) Show that u is harmonic.
c) Let $\Omega:=\mathbb{C} \backslash\{0,2\}$. Find $\int_{\gamma} * d u$ for each cycle γ of the homology basis of Ω. Discuss the existence of harmonic conjugates in Ω.
$6(10+10+10=30)$ Harmonic functions;
a) If u and u^{2} are both harmonic in a domain $\Omega \subset \mathbb{C}$, what do you conclude on u ? Justify your answer.
b) If u_{1}, u_{2}, \cdots, are harmonic in Ω and $\left\{u_{k}\right\}$ converges to u_{0} uniformly on each compact subset of Ω, then prove u_{0} is harmonic.
c) If u is harmonic and bounded in $0<|z|<\rho$, show that the origin is a removable singularity in the sense that u becomes harmonic in $|z|<\rho$ when $u(0)$ is properly defined.

End of problem set. Total 120 points.

