복소함수론 기말 고사, 1999년 6월 16 일

1. (15 점) Let C denote the boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$, where C described in the positive sence. Evaluate each of these integrals:
a) $\int_{C} \frac{z^{2}}{z-3} d z$
b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
2.(15 점) Find the value of the integral of $f(z)$ around the circle $|z-i|=$ 2 in the positive sense when
a) $f(z)=\frac{1}{z^{2}+4}$
b) $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$
2. (15 점) Suppose that $f(z)$ is an analytic $\forall z \in \mathbb{C}$ and that the real part of $f(z)$ is bounded above, i.e., there is a constant M such that $\operatorname{Re} f(z) \leq M$. Show that $f(z)$ is constant.
3. (30 점) a) Find the Taylor series expansion of $\frac{1}{z^{2}}$ at $z=2$. What is the radius of convergence?
b) Find the Laurent series expansions of $f(z)=\frac{1}{z^{2}(1-z)}$ at $z=1$ in each region of convergence .
5.(20 점) Find the residues at each singular point.
a) $\left(\frac{z}{2 z+1}\right)^{3}$
b) $z^{3} \exp \left(\frac{1}{z}\right)$
c) $\tan z$
6.(15점) Let $P(z)$ and $Q(z)$ denote polynomials of degree n and m, respectively, where $m-n \geq 2$. Prove (or explain why): If all of the zeros of the polynomial $Q(z)$ are interior to a simple closed contour C, then

$$
\int_{C} \frac{P(z)}{Q(z)} d z=0
$$

7.(20점) Show that if $a>0$ then

$$
\int_{-\infty}^{\infty} \frac{e^{i a x}}{x^{2}+1} d x=\pi e^{-a}
$$

8.(25점) Evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$ using the residue theorem.
9.(10점) If $a>e$, show that $e^{z}=a z^{n}$ has n roots in $|z|<1$.
10. (15점) Let γ be a positively oriented simple closed curve. Suppose that f and g are analytic in the region interior to and on γ and $f(z) \neq 0$ on γ. What is the value of the integral?

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} g(z) d z .
$$

