1. Find all values of
a) $(-1)^{\frac{1}{6}}$
b) i^{i}
2. Let a function $f(z)$ be analytic in a domain D. Prove that if $|f(z)|=c$, where c is a constant, then f is a constant.
3. Tell whether or not $u(x, y)$ is harmonic. If harmonic find the harmonic conjugate of u.
a) $u(x, y)=\sinh x \sin y$
b) $u(r, \theta)=\ln r$
4. Let $w=f(z)=\sin z$. Find and sketch in the w plane the image of the line segment : $z=x+i y$ where $-\pi \leq x \leq \pi, \quad y=2$.
5. Let C be the circle $z=1+5 e^{i t}, \quad 0 \leq t \leq 2 \pi$. Evaluate
a) $\int_{C} \frac{d z}{z-1}$
b) $\int_{C} \frac{d z}{(z-1)^{n}}$, where n is a positive integer, $n \geq 2$
6. Let C be a contour defined by $x=t^{2}, \quad y=\cos (\pi t)-1$, $0 \leq t \leq 1$. Evaluate $\int_{C}(i z+2)^{4} d z$.
7. State the Cauchy-Goursat theorem and prove the theorem assuming that the function is C^{1}.
8. Let C_{R} be the circle $|z|=R, \quad R>1$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and hence that the value of this integral approaches zero as R tends to infinity.

9 번 이하는 내일 아침 9 시반 까지 한재원 조교 에게 제출할것.
9. Show that if z lies on the circle $|z|=2$, then

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3}
$$

10. Show that
$1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin ((2 n+1) \theta / 2))}{2 \sin (\theta / 2)}, \quad(0<\theta<2 \pi)$.
11. Find all roots of $e^{e^{z}}=1$.
12. Let a_{1}, \ldots, a_{n} be the distinct roots of $z^{n}=b, \quad n \geq 2$. Show that

$$
a_{1}+\cdots+a_{n}=0
$$

13. Let $f(z)$ be analytic on a domain D and $z(t), \quad a \leq t \leq b$, be a contour in D. Let $w(t):=f(z(t))$.
a) Show that $w^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t)$.
b) If f has an antiderivative in D then the integral $\int_{C} f(z) d z$ depends only on the end points of C.
14. Let $f=u+i v$ be analytic in a domain D and that $f^{\prime} \neq 0$. Prove that a level curve of u is perpendicular to a level curve of v at every intersecting point.
15. Show that if u is harmonic in a domain D then $\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}$ is analytic in D.
16. Consider a 2-dimensional flow of fluid whose velocity vector V at (x, y) is $V=(u(x, y), v(x, y))$. Prove that if the fluid is incompressible and irrotational then the complex function $u-i v$ is analytic.
17. Suppose that $f(z)$ is a one-to-one analytic function of a domain D onto a domain $f(D)$ and that $f^{\prime}(z) \neq 0, \quad \forall z \in D$. Show that the linear magnification at z is $\left|f^{\prime}(z)\right|$ (i.e., an element of arc $d s$ in the z-plane is multiplied by $\left|f^{\prime}(z)\right|$ in the w-plane); also show that the area of $f(D)$ is

$$
A=\iint_{D}\left|f^{\prime}(z)\right|^{2} d x d y
$$

18. Let C be a contour from $z=-1$ to $z=1$ that lies in the upper half plane. We consider the principal branch of $z^{1 / 3}, \quad-\pi<\operatorname{Arg} z<\pi$. Evaluate $\int_{C} z^{1 / 3} d z$
