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Descent for the punctured universal elliptic curve, and the
average number of integral points on elliptic curves
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Dohyeong Kim (Ann Arbor, MI)

1. Introduction. The goal of the present article is to show that the
average number of integral points on the curves

(1.1) Ya,b : y2 = x3 + ax+ b, a, b ∈ Z, 4a3 + 27b2 6= 0,

is bounded from above by 2.1 × 108. The points are counted modulo the
natural involution (x, y) 7→ (x,−y), which is of course equivalent to the
negative with respect to the group law of the underlying elliptic curve. The
average is taken with respect to the height

(1.2) H(Ya,b) := max{21234|a|3, 214312b2}
where the reasons behind the numbers multiplied by |a|3 and b2 with be
explained later.

For any positive real number T , let

N(T ) =
∑

Ya,b,H(Ya,b)<T

∑
t∈Ya,b(Z)/{±1}

1

be the total number of Z-valued points on curves Ya,b of height bounded
by T . We also let R(T ) be the number of curves of height at most T .

Theorem 1.1. For all sufficiently large T , we have

(1.3)
N(T )

R(T )
< 2.1× 108.

Although our primary interest is in curves of the form (1.1), we will
develop some techniques that are applicable to a slightly wider range of
equations. Namely, we will consider any curve

(1.4) Y : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ Z,
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represented by a generalised Weierstrass equation, and study the set of S-
integral points on it, where S is a finite set of prime numbers. We always
assume that Y/Q is nonsingular. Our main strategy is to reduce the study
of S-integral points on the curve of the form (1.4) to that of solutions of
certain quartic Thue–Mahler equations.

In fact, the above strategy is not entirely new; the possibility of such a
reduction was known at least to Mordell. In Chapter 27 of his book [7], he
proves that the set of integral solutions of the equation

ey2 = ax3 + bx2 + cx+ d, a, b, c, d, e ∈ Z

is finite, under the assumption that the cubic polynomial on the right hand
side does not have repeated roots, by reducing it to the combination of
two finiteness results on the number of binary quartic forms with given
invariants and the number of solutions of a quartic Thue equation. More
precisely, Mordell showed that the x and z coordinates of the affine surface

(1.5) ey2 = ax3 + bx2z + cxz2 + dz3

can be parametrised by a pair of explicit quartic forms. Geometrically speak-
ing, this shows that the above affine surface is unirational. Perhaps some
readers might be reminded about the well-known result which says that any
smooth cubic surface is geometrically rational.

In our approach, a key role is played by an explicit map, called the de-
scent map, which is generically an isomorphism between open subsets of
two GIT type spaces. One is the universal elliptic curve modulo the natural
involution, and the other is the orbit space of pairs of binary forms of de-
gree 1 and 4. The S-integral points on elliptic curves are parametrised by
the complement of the zero section of the universal elliptic curve, namely the
punctured universal elliptic curve, while the binary quartic forms together
with a solution of the associated Thue–Mahler equation are parametrised
by an open subset of the latter.

It turns out that the binary quartic form that we associate to a point
on an elliptic curve via the descent map is equivalent to the quartic form
which is used by Mordell in order to parametrise the z-coordinate of the
affine surface (1.5). In some sense, our method is essentially that of Mordell,
and our contribution is to appropriately repackage his method so that it is
suitable for our purpose, and that one can connect it to a few deep results
that could not have been available to him.

Having established the descent map in an appropriate form, we can ob-
tain the average number of integral points on curves of the form Ya,b without
too much difficulty. Indeed, the work [3] of Bhargava–Shankar provides the
asymptotic growth of the average number of integral binary quartic forms
with given invariants, and the works [1, 4] of Akhtari–Okazaki and Evertse
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provide absolute upper bounds for the number of solutions of a quartic Thue
equation. Combining these, we will be able to prove the desired upper bound.
In fact, the normalisation of H(Ya,b) is chosen in a way which is compatible
with the choice made by Bhargava–Shankar.

We briefly discuss our terminology. Equations (1.1) and (1.4) have under-
lying (projective) elliptic curves, and their ZS-solutions may be abusively
called ZS-points on those curves. Here, an S-integral point on an elliptic
curve should be understood as a scheme-theoretic ZS-point on the punc-
tured elliptic curve. Of course, the notion of S-integral point coincides with
that of rational point for a projective curve, and the study of S-integral
points is meaningful only for the punctured elliptic curve. Since rational
points on elliptic curves are not our current subject matter, our abuse of
terminology should not cause too much confusion.

Going back to our discussion on the technical aspects of the present ar-
ticle, note that our argument does not involve the ranks of elliptic curves, nor
the arithmetic invariants of auxiliary number fields. To the best knowledge
of the author, the previously known bounds such as [6, 8] for the number of
integral points on a particular elliptic curve depend exponentially either on
the rank of the curve, or the rank of a certain ideal class group of a number
field such as the two-division field of the curve. Combining this type of upper
bounds with an analysis on the distribution of ranks, one might try to obtain
an upper bound for the average number of points on elliptic curves. Indeed,
Alpoge [2] considered a family, which is almost but not exactly identical
to ours, of elliptic curves, and claimed that this strategy yields 65.8457 as
an upper bound. His family consists of the curves Ya,b as above, but with
an additional condition that Ya,b is minimal; there is no prime p such that
both p4 | a and p6 | b hold.

Another way of attacking integral points on elliptic curves is to apply
Baker’s method. Since the upper bound resulting from Baker’s method grows
rather rapidly in terms of the coefficients of the equation, it does not seem
easy to obtain an upper bound for N(T )/R(T ) out of it.

As mentioned earlier, the descent map is generically an isomorphism, and
this has an implication about S-integral points on elliptic curves. In fact,
the descent map turns out to be an isomorphism over Z[1/6]. If an elliptic
curve E/Q has good reduction outside S, then the S-integral points on E
can be defined using the smooth model of E over ZS , the ring of S-integers.
Let us temporarily denote by E an elliptic curve over Q which has good
reduction outside S, and by t a ZS-point on E minus the origin. Using the
descent map, we will obtain a bijection between the set of all equivalence
classes of pairs (E, t) and the set of orbits of pairs of binary forms, provided
that both 2 and 3 are contained in S. For arbitrary S, the descent map does
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not necessarily induce a bijection, but it remains to be injective, whence it
can be used to compute all such pairs (E, t). We numerically demonstrate
this for S = {2}.

We explain why the height function (1.2) is normalised in such a way.
From the point of view of the present article, the set of integral points of
the punctured universal elliptic curve is mapped onto a subset of the set
of orbits of pairs (L,Q) of binary forms of degree 1 and 4. In particular,
giving a height on the latter set always pulls back to the former to define a
compatible height function. Once we declare the height of the pair (L,Q) to
be the height of Q considered by [3], we are forced to work with the pull-back
of it, which is precisely our normalisation of (1.2). The magnitude of the
constants in (2) is a reason why the constant in Theorem 1.1 is admittedly
very large. Most likely 2.1× 108 is not optimal, but our method falls short
of obtaining a better upper bound.

It turns out that our descent map is not surjective when we work over Z.
The reason for this is that quartic forms arising in this way have invariants
divisible by 4. Since we will be counting all binary quartic forms without
any divisibility conditions on their invariants, we will be overestimating
N(R)/R(T ). Our method may be sharpened using a finer estimate on the
number of quartic forms with invariants satisfying certain divisibility con-
ditions, which we do not pursue here.

We outline the organisation of the paper. In Section 2, we review some
basic properties of the notion of equivalence between pairs of binary forms.
In Section 3, we define the descent map, which associates two integral binary
forms to a point on the punctured universal elliptic curve. In Section 4, we
use the descent map to identify S-integral points on the punctured universal
elliptic curve with certain equivalence classes of pairs of binary forms. In
Section 5, we work out a numerical example with S = {2}. In Section 6, we
use the descent map together with the works of Akhtari–Okazaki, Evertse,
and Bhargava–Shankar to establish the desired upper bound for the average
number of integral points on elliptic curves.

We close the introduction with two remarks. Firstly, one naturally won-
ders what can be said about the average number of S-integral points on
elliptic curves. An obstacle is due to the fact that the result of Bhargava
and Shankar is restricted to binary forms with integer coefficients with re-
spect to GL2(Z)-transformations, rather than forms with coefficients in ZS
that are subject to GL2(ZS)-transformations. On the other hand, the de-
scent map exists without any restriction of S, and Theorem 6.9 is extended
to the forms with S-integral coefficients in [5] with an upper bound which
is independent of the form. Another obstacle is that one of the properties
of the height function that holds true for S = ∅ does not generalise to the
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situation with S 6= ∅. More precisely, when S = ∅, the height function on the
quartic form, when pulled back to the punctured universal elliptic curve via
the descent map, gives rise to a height function which is vertical in the sense
that the height only depends on the elliptic curve but not on the point on it.
However, whenever S 6= ∅, the height function on the punctured universal
elliptic curve is no longer vertical. We do not know how to overcome these
obstacles.

Secondly, one also wonders what would be the true average number of
integral points, if it exists, on curves of the form Ya,b. While we are relying
on the absolute upper bound for the number of solutions of a Thue equation
(Theorem 6.12), the average number of solutions of a Thue equation may well
be smaller. More precisely, we can order the equivalence classes of integral
binary quartic forms in the way of Bhargava–Shankar, where the equiva-
lence relation is taken with respect to the obvious GL2(Z)-transformations,
and ask whether the average number of solutions of the associated Thue
equations is smaller than the absolute bounds employed in this article. An
affirmative answer, which is seemingly missing at present, will allow one to
effortlessly improve the upper bound obtained in this article.

2. Equivalence between pairs of binary forms. There are several
notions for equivalence between pairs of binary forms. The aim of the cur-
rent section is to define the notion of equivalence which is relevant for our
purpose.

Let S be any finite set of primes. Let us consider a pair (L,Q) of binary
forms

L = b0u+ b1v, Q = c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4,

where bi’s and ci’s are S-integers. We always assume that the coefficients
of L and Q do not have nontrivial common divisors in ZS . More precisely,
we assume that the ideal of ZS generated by b0 and b1 is the unit ideal, and
similarly the ideal of ZS generated by c0, c1, . . . , c4 is also the unit ideal.

The discriminant of Q, denoted by ∆Q, is given by

∆Q = c21c
2
2c

2
3 − 4c0c

3
2c

2
3 − 4c31c

3
3 + 18c0c1c2c

3
3 − 27c20c

4
3 − 4c21c

3
2c4

+ 16c0c
4
2c4 + 18c31c2c3c4 − 80c0c1c

2
2c3c4 − 6c0c

2
1c

2
3c4 + 144c20c2c

2
3c4

− 27c41c
2
4 + 144c0c

2
1c2c

2
4 − 128c20c

2
2c

2
4 − 192c20c1c3c

2
4 + 256c30c

3
4,

and the discriminant of L ·Q, denoted by ∆, is given by

∆ = ∆Q ·Q(−b1, b0)2.
For a fixed S, we will be concerned with pairs of forms for which ∆ is
an S-unit. We introduce the following notion of admissibility to simplify the
exposition.
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Definition 2.1. Let (L,Q) be a pair of binary forms with S-integral
coefficients as above. We say that this pair is S-admissible if ∆ is an S-unit.

Let (L,Q) and (L′, Q′) be two S-admissible pairs. There is, of course, the
obvious notion of equality between them, defined by coefficientwise equal-
ity. A weaker notion of equality, which is more natural if we view them as
elements of projective space, is the following.

Definition 2.2. Let (L,Q) and (L′, Q′) be S-admissible pairs. We say
that the pairs are projectively equivalent if there are λ1, λ2 ∈ Z×S such that
(L,Q) = (λ1L

′, λ2Q
′).

Note that this definition does make sense among S-admissible pairs, be-
cause if ∆ is the discriminant of (L,Q), then the discriminant of (λ1L, λ2Q)
is λ81λ

8
2∆.

Now we introduce the desired notion of equivalence.

Definition 2.3. Let (L,Q) and (L′, Q′) be S-admissible pairs. We say
that they are GL2-equivalent if there is g ∈ GL2(ZS) such that (Lg, Qg) is
projectively equivalent to (L′, Q′). Here g acts on L and Q by the linear
change of variables.

We now take a closer look at the notion of GL2-equivalence under the
assumption that 2 ∈ S. If 2 ∈ S, then for each S-admissible pair (L,Q) it is
possible to find a pair (L′, Q′) which is GL2-equivalent to (L,Q) and such
that

L′ = v, Q′ = u4 +B2u
2v2 +B3uv

3 +B4v
4,

where B2, B3, B4 are integers, rather than S-integers. Furthermore, it is
possible, as we will prove shortly, to choose a minimal pair in the following
sense.

Definition 2.4. A pair of binary forms

(v, u4 +B2u
2v2 +B3uv

3 +B4v
4)

with integral coefficient is called minimal if there is no prime prime p such
that pi |Bi for i = 2, 3, 4 simultaneously. If the form has S-integral coeffi-
cients, it is called minimal at p for a prime p 6∈ S when pi |Bi for i = 2, 3, 4
do not hold simultaneously.

Proposition 2.5. Recall that 2 ∈ S. Given any pair (L,Q) of binary
forms as above, it is possible to find a minimal pair

(2.1) (v, u4 +B2u
2v2 +B3uv

3 +B4v
4)

which is GL2-equivalent to (L,Q). Such a minimal pair is unique up to
replacing B3 with −B3. In other words, such a minimal pair is unique
if B3 = 0, and there are precisely two such pairs if B3 6= 0.
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Proof. The proof is by elementary algebra. Let (L,Q) be an S-admissible
pair given by

L = b0u+ b1v, Q = c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4.

Since b0 and b1 generate the unit ideal in ZS , by a linear change of variables
we may assume L = v. Then c0 must be an S-unit. Otherwise, the non-S-unit

Q(b1,−b0) = c0

would divide ∆, contradicting the S-admissibility of the pair. Thus, via
projective equivalence, we may assume that c0 = 1. Now we have a pair

L = v, Q = u4 + c1u
3v + c2u

2v2 + c3uv
3 + c4v

4,

where the coefficients are in ZS . Since we assume 2 ∈ S, we are allowed to
make the substitution

u 7→ u− c1
4
v

if necessary, so we may assume that c1 = 0 as well. Since the denominators
of c2, c3, c4 are S-units, we may multiply v by an S-unit, and apply projective
equivalence, in order to get a minimal form.

The only linear change of variables which preserves the minimality is
given by (u, v) 7→ (±u, v). Thus, there is only one other pair equivalent to a
given minimal form

L = v, Q = u4 + c2u
2v2 + c3uv

3 + c4v
4,

and this is obtained by replacing c3 by −c3. The proof of the proposition is
complete.

Remark 2.6. It is worth noting that if we work over a general number
field, then the number of possible minimal forms may grow. However, the
involution c3 7→ −c3 on the set of minimal forms remains of exceptional
importance, since it will correspond to the negative on the elliptic curve.

3. Two binary forms associated to a point on an elliptic curve.
The aim of the present section is to define two integral binary forms associ-
ated to a point on an elliptic curve, and study their basic properties.

We begin with notation. Let

(3.1) E : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

be an elliptic curve represented by a generalised Weierstrass equation whose
coefficients are rational integers. If t is a Z-point of E, then we shall write

t = (xt : yt : zt)

where xt, yt, and zt are relatively prime integers.
Let Y be the elliptic curve punctured at the origin. In other words, Y is

the open subscheme of E defined by the complement of the vanishing locus
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of z. If S is any finite set of primes, we denote by ZS the ring of S-integers.
Then the ZS-points of Y can be described as

(3.2) Y (ZS) = {t = (xt : yt : zt) : t ∈ E(Z), zt ∈ Z×S }.
Of course, the points of Y (ZS) bijectively correspond to the solutions of the
affine equation

(3.3) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

so one can view (3.2) as an alternative description for the set of solutions
of (3.3) in ZS . In our exposition, we will mainly use (3.2).

For each t ∈ Y (ZS), we will construct two binary forms of degree one
and four respectively. We denote them by Lt and Qt, where the letters
are chosen to indicate that they are linear and quartic forms, respectively.
The variables of Lt and Qt will be denoted by u and v, so we shall often
write Lt(u, v) and Qt(u, v) in order to emphasise the variables. We explain
the construction of Lt(u, v) and Qt(u, v) below.

The construction of Lt is straightforward. Independently of t, we let

Lt(u, v) = v,

which is regarded as a linear form in the variables u and v. For the geometric
reason underlying this hardly motivating definition, see Remark 3.2.

The construction of Qt is slightly more involved, though it is a classical
one which is often used in two-descent for elliptic curves. Let P2

xyz be the
projective plane with homogeneous coordinates x, y, and z. Note that E is
given as a cubic curve in P2

xyz. For a given t ∈ Y (ZS), the lines in P2
xyz which

pass through t are (projectively) parametrised by the linear forms

ux+ vy + wz = 0 such that uxt + vyt + wzt = 0.

Under the assumption that zt 6= 0, such lines are parametrised by u and v,
because we can uniquely recover w from

w =
uxt + vyt
−zt

.

The quartic form Qt(u, v), which will be explicitly determined shortly,
is characterised by the property that its four zeros represent the four lines
which are the ramification points of the projection map from E to the space
of lines through t.

Proposition 3.1. The quartic form Qt(u, v) is given by

(3.4) A2 − 4v2B

where

A = −ztu2 + zta1uv + (a2zt + xt)v
2,(3.5)

B = xtztu
2 + (2ytzt + z2t a3)uv + (a4z

2
t − a1ztyt + a2ztxt + x2t )v

2.(3.6)
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Proof. This follows from a straightforward calculation. We need to find
the algebraic condition that is equivalent to the geometric one that the line

(3.7) ux+ vy + wz = 0

is tangent to E. We insert y = ux+wz
−v in

(3.8) y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3)

and obtain a cubic form C(x, z) in x and z. Using the condition that t
satisfies both (3.7) and (3.8), one observes that C(x, z) should have a fac-
torisation

(3.9) C(x, z) =
1

ztv2
(xzt − zxt) · q(x, z)

where q(x, z) is a quadratic form in x and z whose coefficients are quadratic
in u and v. By expanding the right hand side of (3.9) and equating the
coefficients of it with those of C(x, z), one obtains

q(x, z) = v2x2 +Axz +Bz2

where A and B are polynomials given in the statement of the proposition.
The condition that the line is a ramification point of the projection map is
equivalent to the discriminant of q(x, z) being zero. From this, one obtains
the formula for Qt(u, v).

Remark 3.2. The linear form Lt(u, v) = v acquires the following ge-
ometric interpretation once we view u and v as parameters for the lines
passing through t. The zero of Lt(u, v) is (u, v) = (1, 0), which corresponds
to the line

x− xt
zt
z = 0

passing through t and the origin of E.

Remark 3.3. In the context of two-descent for the elliptic curve E,
Qt(u, v) represents a torsor for E[2], the group of two division points of E.

Remark 3.4. A more precise form of Proposition 3.1 will be given in
Theorem 4.1.

Let us work out some numerical examples in order to assure ourselves
that the formula forQt(u, v) is correct and to illustrate the nature ofQt(u, v).
Let us consider

(3.10) E : y2z + yz2 = x3 − xz3,
which is a curve of conductor 37. It has no nontrivial rational point of order
two. Its rank is one, and the Mordell–Weil group is generated by the point

P0 = (0, 0, 1).

Let us take t = n · P0.
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For n = 1, one gets

Qt(u, v) = u4 − 4uv3 + 4v4,

which is irreducible.

For n = 2, we have t = (1, 0, 1). One readily computes that

Qt(u, v) = u4 − 6u2v2 − 4uv3 + v4,

which factors as

(u+ v)(u3 − u2v − 5uv2 + v3),

showing that the corresponding torsor is trivial.

For n = 3, we have t = (−1,−1, 1). Similarly,

Qt(u, v) = u4 + 6u2v2 + 4uv3 + v4,

which is irreducible.

As a second example, consider

(3.11) E : y2z = x3 − 1681xz2.

Since 1681 = 412 is a square, it has three rational points of order two. Also,
it turns out that the Mordell–Weil group has rank two, generated by

P1 = (−9, 120, 1), P2 = (841, 24360, 1).

For t = P1, we have

Qt(u, v) = u4 + 54u2v2 − 960uv3 + 6481v4

which is irreducible.

For t = P2, we have

Qt(u, v) = u4 − 5046u2v2 − 194880uv3 − 2115119v4,

which factors as

(u2 − 58uv − 2521v2)(u2 + 58uv + 839v2)

but does not possess a linear factor.

For t = 2 · P1, one has

t = (93139320, 443882159, 1728000)

and

Qt(u, v) = 43200(40u− 827v)(120u+ 143v)(120u+ 719v)(120u+ 1619v).

This proves that Qt(u, v) defines the trivial torsor, as expected.

Now we turn to the key proposition regarding both Lt(u, v) and Qt(u, v).

Proposition 3.5. Let ∆E be the discriminant of E, and let S be any
finite set of primes numbers. Let ∆t be the discriminant of binary quintic
form Lt(u, v) ·Qt(u, v). Then ∆t is a unit in ZS [(2∆E)−1].
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Proof. Let p be an odd prime such that p does not divide ∆E and p
does not belong to S. In order to prove the proposition, it suffices to show
that ∆t is prime to p. We proceed in two steps.

Firstly, we will show that the discriminant of Qt(u, v) is prime to p.
Let t ∈ Y (ZS), and let tp be the reduction of t modulo p. Let Ep be the
reduction of E modulo p. Consider the twisted multiplication-by-two map

θ : Ep → Ep, s 7→ −2s,

which is a separable morphism since p is odd. Also, the degree of θ is four.
It follows that θ−1(tp) has four geometric points. Here a geometric point
means one defined over an algebraic closure of the finite field with p el-
ements. Connecting the four geometric points to tp, we obtain four lines
passing through tp, and these four lines are precisely represented by the zeros
of Qt(u, v) modulo p. The nonvanishing of the discriminant of Qt(u, v) mod-
ulo p is equivalent to the condition that the four lines are distinct. Suppose
that two of the four lines coincide, say L0. Then L0 contains s1, s2 ∈ θ−1(tp)
which are distinct. Furthermore, L0 is tangent to Ep at s1 and s2 by con-
struction. This contradicts that L0 and Ep do not have more than three
points of intersection counted with multiplicity. Hence we have completed
the proof of the first step, showing that the discriminant of Qt(u, v) is prime
to p.

Now we proceed to the second step. It is based on the representation of
the discriminant as a product of root differences. Indeed, if we let δt be the
discriminant of Qt, then we find that

(3.12) ∆t = δt ·Qt(1, 0)2

from the representation of the discriminant as square of the product of all
possible differences between roots. In the first step, we showed that δt is
prime to p, so it remains to show that Qt(1, 0) is prime to p. This follows
immediately from our explicit formula for Qt(u, v) given in Proposition 3.1,
from which we see that the number

Qt(1, 0) = z2t

is prime to p if t ∈ Y (ZS).

The argument using the dull algebraic identity (3.12) can be replaced
with the following geometric argument. We would like to show geometrically
that any of the four lines defined by Qt = 0 equals the line defined by Lt = 0,
after reduction modulo p. Let us begin with the following lemma.

Lemma 3.6. None of the four geometric points belonging to θ−1(tp) is
the origin of Ep.

Proof. Indeed, suppose on the contrary that s is a geometric point of
θ−1(tp) and s is the origin of Ep. Then θ(s) = tp implies, by definition of θ,
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that

−2s = tp,

which implies tp = 0. This contradicts that tp is not the origin of Ep. This
observation in turn implies that none of the four lines defined by the zeros
of Qt(u, v) modulo p passes through the origin.

Suppose, on the contrary, that there is a line L0 which passes through one
of the four points of θ−1(tp), say s0, and further passes through both tp and
the origin. Note that s0 cannot be the origin by the lemma. It follows that L0

and Ep have at least five points of intersection counted with multiplicity, to
which the origin contributes at least three, and s0 contributes two. This is
clearly absurd.

4. Descent for the S-integral points on the punctured universal
elliptic curve. We apply the results from the previous sections in order
to classify S-integral points on the universal elliptic curve. We denote by Y
the punctured universal elliptic curve, whose ZS-points are given by

(4.1) Y(ZS) = {(Y, P ) : P ∈ Y (ZS),

Y is a punctured smooth elliptic curve over ZS}
where a smooth elliptic curve over ZS means an elliptic curve over Q which
has good reduction outside S. Note that the set of ZS-points on such an
elliptic curve E over Q can be unambiguously defined in this way, because
for every prime p 6∈ S, E has a unique minimal and smooth model over Zp,
the ring of p-adic integers.

There is an obvious action of the group {±1} of order two on Y(ZS),
given by

±1: (Y, P ) 7→ (Y,±P )

where the negative denotes the negative under the group law of the elliptic
curve. As promised in the introduction, we will prove the following theorem
in the present section.

Theorem 4.1. Assume 2, 3 ∈ S. There is a bijection

(4.2) κ : Y(ZS)/{±1} → {S-admissible pairs }/∼
where ∼ is the GL2-equivalence relation.

Proof. We will prove the assertion by constructing the inverse. Let

(v, u4 +B2u
2v2 +B3uv

3 +B4v
4)

be an S-admissible pair, which is minimal away from S. In particular,
B2, B3, B4 are S-integers, and the discriminant

(4.3) −4B3
2B

2
3 + 16B4

2B4 − 27B4
3 + 144B2B

2
3B4 − 128B2

2B
2
4 + 256B3

4
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is an S-unit. By defining

(4.4)
xt = −1

6B2, a4 = −1
4(B4 + 3x2t ),

yt = −1
8B3, a6 = y2t − x3t − a4xt,

we obtain a curve

(4.5) E : y2 = x3 + a4x+ a6

which is defined over ZS , and has a point t = (xt, yt). Note that we have
to divide by 6 in order to get xt, hence we have to rely on the assumption
that 2, 3 ∈ S. We need to show that E has good reduction outside S. By
direct computation, the discriminant of E is given by

2−8 · (−4B3
2B

2
3 + 16B4

2B4 − 27B4
3 + 144B2B

2
3B4 − 128B2

2B
2
4 + 256B3

4),

which is an S-unit by comparison with the formula (4.3) for the discriminant
of Q(u, v).

We need to verify that the association (L,Q) 7→ (E,P ) is well-defined. As
observed earlier, there is an involution on the set of minimal pairs sending B3

to −B3. It is clear from (4.4) that it corresponds to the involution (E,P ) 7→
(E,−P ). Thus we have constructed a section of κ, showing its surjectivity.

To see the injectivity of κ, recall that 2, 3 ∈ S, hence an elliptic curve E
which has good reduction outside S has a model of the form (4.5) which has
good reduction outside S, and there is no prime p for which p4 | a4 and p6 | a6.
Starting with a model of E which is minimal outside S, we will show that
the pair (L,Q) = κ(E,P ) is minimal away from S. By the explicit formula
of (L,Q) given in Proposition 3.1, we have

Q(u, v) = u4 − 6xtu
2v2 − 8ytuv

3 − (3x2t + 4a4)v
4,

and we claim that it is minimal away from S. Suppose on the contrary that
there is a prime p 6∈ S for which Q(u, v) is not minimal. Since 2, 3 ∈ S,

p2 |xt, p4 | 3x2t + 4a4,

from which we conclude that p4 | a4. Furthermore, non-minimality at p im-
plies p3 | yt. However, by rewriting the equation of the elliptic curve in the
form

a6 = y2t − x3t − a4xt
one sees that p6 divides a6. This contradicts the minimality of E at p.

Thus, we have shown that κ is a bijection.

Remark 4.2. One may wonder what can be said about κ(Y (ZS)) for
a fixed curve Y . A difficulty in characterizing κ(Y (ZS)) among the equiv-
alence classes of all admissible pairs arises from the existence of twists.
If Y ′ is a quadratic twist of Y , then it is not possible to separate κ(Y (ZS))
from κ(Y ′(ZS)) using invariants.
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5. The example S = {2}. The aim of the present section is to give a
numerical example, in which one determines Y(ZS)/{±1} from the knowl-
edge of a set of representatives for the S-admissible pairs. Although we
assumed 2, 3 ∈ S in Theorem 4.1, as long as numerical examples are con-
cerned, the assumption 2, 3 ∈ S is not strictly necessary. Indeed, the map κ
exists anyway, and for each S-admissible pair, one obtains a point of Y de-
fined over ZS [6−1]. One can proceed to verify whether this point is in fact
defined over ZS or not, and by collecting those with an affirmative answer,
one obtains Y(ZS)/{±1}.

Despite that the finiteness theorem for the number of equivalence classes
of S-admissible pairs is effective, determination of it in practice can be
rather challenging. In this section, we use the work of Smart [9], who com-
puted all binary quintics, reducible or not, whose discriminant is an S-unit
where S = {2}. In particular, all S-admissible pairs can be obtained from [9],
by choosing all possible linear factors of each binary quintic.

Table 1 is produced from Table 5 of [9], which contains all reducible
binary quintic forms whose discriminant is a power of 2 up to sign, i.e., an
S-unit with S = {2}. In [9], the title of Table 5 says that the quintic forms
listed have discriminant a power of 2, but also the forms with discriminant
minus a power of 2 have been included. Thus we chose the expression that
the discriminant is a power of 2 up to sign, which is equivalent to saying
that the discriminant is an S-unit with S = {2}.

We wish to find all {2}-admissible pairs (L,Q) from Table 1. For each
(L,Q), the quintic form L ·Q must be equivalent to fi for some i, hence we
can find all of them by finding all possible factorisations of fi into a linear
form and quartic forms. In fact, fi for 1 ≤ i ≤ 4 has three linear factors,
and the others have a unique linear factor. It turns out that every reducible
quintic form in the table admits a linear factor.

Let us work out the case i = 1. In this case, f1(u, v) factors as

vu(u+ v)(u2 + v2),

hence there are three pairs

(v, u(u+ v)(u2 + v2)), (u, v(u+ v)(u2 + v2)), (u+ v, uv(u2 + v2))

associated to f1(u, v). Applying (u, v) 7→ (v, u) one sees that the first two
pairs are equivalent. Transforming them into minimal forms, we obtain two
pairs

(L1, Q1) = (v, u4 + 10u2v2 + 40uv3 − 51v4), (L2, Q2) = (v, u4 − v4),

in their minimal forms. From (L1, Q1), we obtain the curve

E1 : y2 = x3 + 32
3 x+ 1280

27
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Table 1. Reducible quintics whose discriminant is a power of 2 up to sign

i fi(u, v) i fi(u, v)

1 u4v+u3v2+u2v3+uv4 2 2u4v+2u3v2−u2v3−uv4

3 8u5−6u3v2+uv4 4 2u5−3u3v2+uv4

5 u5+4uv4 6 u5+3u3v2+2uv4

7 u4v+3u2v3+2v5 8 u5+2u4v+4u3v2+4u2v3+4uv4

9 u5+3u4v+2u3v2+2u2v3+uv4−v5 10 u5−4uv4

11 u5+4u4v+4u3v2+8u2v3+4uv4 12 u5−4u4v+8u2v3−4uv4

13 u4v−8u3v2+12u2v3+16uv4−28v5 14 u5+u4v+uv4+v5

15 u5+uv4 16 u5+12u3v2+4uv4

17 u4v−2v5 18 u5+u4v−2uv4−2v5

19 u5−2uv4 20 u4v+2v5

21 u5+2uv4 22 3u5+8u4v+4u3v2+4uv4

23 4u4v+4u2v3−16uv4+9v5 24 u5−4u3v2+2uv4

25 u5+2u4v−4u3v2−8u2v3+2uv4+4v5 26 u4v−4u2v3+2v5

27 u5+u4v−4u3v2−4u2v3+2uv4+2v5 28 u5+9u4v+14u3v2−34u2v3−19uv4+5v5

29 u5+4u4v−6u3v2−4u2v3+uv4 30 4u4v+16u3v2−12u2v3−24uv4+17v5

31 4u5+12u4v−28u3v2−12u2v3+41uv4−17v5 32 u5−8u4v+4u3v2+16u2v3+4uv4

33 u5−7u4v−4u3v2+20u2v3+20uv4+4v5 34 u5+4u3v2+2uv4

35 u4v+4u2v3+2v5 36 u4v−2u2v3−v5

37 u5+u4v−2u3v2−2u2v3−uv4−v5 38 u5−2u3v2−uv4

39 u5+4u3v2−4uv4 40 u4v+4u2v3−4v5

41 u5+u4v+4u3v2+4u2v3−4uv4−4v5 42 u4v+4u3v2−6u2v3+12uv4−7v5

43 u5+3u4v−10u3v2+18u2v3−19uv4+7v5 44 u5−2u3v2+2uv4

45 u4v−2u2v3+2v5 46 u5+u4v−2u3v2−2u2v3+2uv4+2v5

47 u5+4u3v2+8uv4 48 u4v+4u2v3+8v5

49 5u5+13u4v+2u3v2−14u2v3−3uv4+5v5 50 u4v+6u2v3+8uv4+5v5

51 u5+4u4v+4u3v2−8u2v3+4uv4

with point

t = (−5
3 ,−5)

on it. The above model is not minimal at 3. The minimal equation for E1 is

E128a1 : y2 = x3 + x2 + x+ 1,

whose label in Cremona’s Elliptic Curve Database is “128a1”, and the co-
ordinates of t are

t = (−3
4 ,

5
8)

with respect to the minimal equation.

Similarly, from (L2, Q2) we obtain the curve

y2 = x3 + 1
4x

and the point t = (0, 0). The above equation corresponds to the minimal
equation

E32a1 : y2 = x3 + 4x,
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whose label is “32a1”, and t has the same coordinate t = (0, 0) with respect
to the minimal equation.

In fact, E128a1 has more 2-integral points; one finds the list

(−1, 0, 1), (−3/4, 5/8, 1), (0, 1, 1), (1, 2, 1), (7, 20, 1)

by applying the command “S integral points” in SAGE. Note that the list
shows the S-integral points modulo the action of {±1} on the curve. We
already produced the second point using f1, and one should be able to de-
termine the rest using the remaining fi’s. Indeed, the four remaining points
can be obtained from i = 11, 37, 40, 41.

By carrying out similar calculations for all fi, we obtain Table 2. We note
that f30 and f31 give rise to two equivalent pairs, and so do f42 and f43.

Table 2. Correspondence between fi’s and elliptic curves

Label i Label i Label i

“128a1” 1, 11, 37, 40, 41 “128a2” 2, 4, 23, 32, 33, 45, 46 “128b1” 36

“128b2” 48 “128c1” 39 “128c2” 47

“128d1” 38 “128d2” 44 ”256a1” 2, 22, 24, 25, 51

“256a2” 3, 8, 27, 35 “256b1” 2, 21, 28, 29, 50 “256b2” 9, 17, 18

“256c1” 19 “256c2” 20 “256d1” 34

“256d2” 26 “32a1” 1, 42, 43 “32a2” 5, 12, 14

“32a3” 7 “32a4” 4, 49 “64a1” 13, 15, 16

“64a2” 6 “64a3” 3, 30, 31 “64a4” 10

6. The average number of integral points on elliptic curves. In
this section, we turn to the main goal of the paper, namely the average
number of integral points on elliptic curves. Recall that we are considering
curves of the form

(6.1) Ya,b : y2 = x3 + ax+ b

such that a, b ∈ Z and 4a3 + 27b2 6= 0. The curves Ya,b will be ordered by
height, normalised in the following way.

Definition 6.1. Define the height of Ya,b to be

(6.2) H(Ya,b) = max{21234|a|3, 214312b2}.

For any positive real number T , define R(T ) to be the number of curves Ya,b
up to height T .

Lemma 6.2. For sufficiently large T , we have

R(T ) < 2−113−22/3T 5/6 < 1.55× 10−7 × T 5/6.
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Proof. This follows from the observation that there are O(T 1/3) pairs
(a, b) satisfying 4a3 + 27b2 = 0 and max{21234|a|3, 214312b2} < T .

For any positive number T , define

(6.3) N(T ) =
∑

Ya,b,H(Ya,b)<T

∑
t∈Ya,b(Z)/{±1}

1,

which is the total number of integral points on the curves of the form Ya,b
up to height T , counted modulo the action of {±1}. Accordingly, the ratio
N(T )/R(T ) will be called the average number of integral points on these
curves up to height T . By Lemma 6.2, finding an upper bound for the average
number of integral points reduces to finding a bound for N(T ).

Theorem 6.3. We have

(6.4) N(T ) < (31.5 . . .)T 5/6

for all sufficiently large T > 0. In particular, the average number of integral
points on curves of the form Ya,b, namely the ratio N(T )/R(T ), is bounded
by 2.1× 108 for all sufficiently large T > 0. It is counted modulo the natural
involution on the underlying elliptic curves.

In the rest of the section, we give the proof for Theorem 6.3. The starting
point is a map

φ : (Ya,b, t) 7→ ((1, 0), Qa,b,t(u, v)) ∈ Z2 × Sym4(Z2)∗

where

Qa,b,t(u, v) = u4 − 6xtu
2v2 − 8ytuv

3 − (3x2t + 4a)v4

and u, v are viewed as the basis of (Z2)∗ dual to the standard basis for Z2.
In particular, we view (1, 0) as the solution of the equation

Qa,b,t(u, v) = 1,

which is often called the Thue equation associated to Qa,b,t(u, v). It is merely
a reformulation of the map κ we introduced earlier, but in this way the
argument becomes more natural.

Naturally GL2(Z) acts on Z2 × Sym4(Z2)∗, and the action preserves
solutions of the Thue equations. That is, the subset

{((n,m), Q(u, v)) ∈ Z2 × Sym4(Z2)∗ : Q(n,m) = 1}
is preserved by the action of GL2(Z).

Proposition 6.4. The map

(6.5) φ : {(E, t) : t ∈ E(Z)}/{±1} → {((n,m), Q(u, v)) : Q(n,m) = 1}/∼
is injective, where ∼ denotes the equivalence relation induced by the action
of GL2(Z).
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Proof. Suppose that (Ya,b, t) and (Ya′,b′ , t
′) have the same image under φ.

Then we have γ ∈ GL2(Z) which fixes (1, 0) and transforms

Qa,b,t = u4 − 6xtu
2v2 − 8ytuv

3 − (3x2t + 4a)v4

into

Qa′,b′,t′ = u4 − 6xt′u
2v2 − 8yt′uv

3 − (3x2t′ + 4a′)v4.

It is easy to see that the identity and (u, v) 7→ (±u,±v) are the only pos-
sibilities for γ. Indeed, the stabiliser of (1, 0) in GL2(Z) is generated by
the group of unipotent matrices, together with the transformation (u, v) 7→
(±u,±v). By comparing the coefficients of u3v, one sees that γ must be of the
form (u, v) 7→ (±u,±v). Thus we conclude that a = a′, b = b′, and t = ±t′.
Of course, the possible minus sign in the equality t = ±t′ means the negative
with respect to the group law of the underlying elliptic curve.

Remark 6.5. Note that

(6.6) ((n,m), Q(u, v)) ∼ ((−n,−m), Q(u, v))

via the matrix with −1’s on the diagonal.

We briefly recall the invariant theory of binary quartic forms. Let

Q = c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4

be a binary quartic form with integer coefficients. With respect to the action
of GL2(Z), there are two invariants

J2 = 1
12c

2
2 − 1

4c1c3 + c0c4,

J3 = 1
216c

3
2 − 1

48c1c2c3 + 1
16c0c

2
3 + 1

16c
2
1c4 − 1

6c0c2c4,

of degree two and three respectively. We define the height of Q by

H(Q) = max{2634 · |J2|3, 210312 · J2
3}

where the coefficients of |J2|3 and J2
3 are chosen so that our definition of

height agrees with that of [3]. Note that our normalisation of J2 and J3
differs from the corresponding invariants I and J given in [3, §2].

Proposition 6.6. Let t ∈ Ya,b(Z) and φ((Ya,b, t)) = (L,Q). Then

(6.7) H(Ya,b) = H(Q).

In other words, φ preserves the heights.

Proof. This follows by straightforward calculation. Indeed,

Q = u4 − 6xtu
2v2 − 8ytuv

3 − (3x2t + 4a)v4

and we have the relation y2t = x3t +axt+b, from which one deduces J2(Q) =
4a and J3(Q) = 4b. Thus

H(Q) = max{21234|a|3, 214312b2} = H(Ya,b).
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As we have the injective map φwhich preserves the heights, the estimation
of N(T ) is reduced to the estimation of the number of pairs ((n,m), Q(u, v))
which lie in the image of φ, modulo GL2(Z)-equivalence. We consider three
types:

(1) Q(u, v) is irreducible over Q,
(2) Q(u, v) has a linear factor over Q,
(3) Q(u, v) has two irreducible quadratic factors over Q,

which are mutually disjoint. Let Xi(T ) be the collection of GL2(Z)-orbits
of binary forms of type i whose height is less than T .

We consider three subcollections of X1
j (T ), j = 0, 1, 2, defined by the

condition that an element in X1
j (T ) has exactly 4−2j linear factors over R.

Theorem 6.7. We have∑
Q∈X1

0 (T )

1 =
2π2

405
T 5/6 +O(T 3/4+ε),(6.8)

∑
Q∈X1

1 (T )

1 =
16π2

405
T 5/6 +O(T 3/4+ε),(6.9)

∑
Q∈X1

2 (T )

1 =
4π2

405
T 5/6 +O(T 3/4+ε),(6.10)

∑
Q∈X3(T )

1 = O(T 2/3+ε),(6.11)

where the sum is taken over all irreducible integral binary quartic forms with
respect to GL2(Z)-equivalence.

Proof. The estimation of the sum over X1
j (T ) is a consequence of [3,

Theorem 1.6]. The estimation of the sum over X3(T ) is given in [3, proof
Lemma 2.3].

Proposition 6.8. For X2(T ),∑
Q∈X2(T ), Q∈Im(φ)

1 = O(T 3/4).(6.12)

Proof. If Q is in X2(T ), then Q factors as

Q = (u− rv)C(u, v)

where r is an integer and C(u, v) is a binary cubic form with integral coef-
ficients such that C(1, 0) = 1. By means of the translation u 7→ u+ rv, Q is
equivalent to the form

(6.13) u(v3 + c1v
2u+ c2vu

2 + c3u
3)
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with integers c1, c2 and c3. Using the translation v 7→ v + r′u for some
integer r′ if necessary, we may assume that |c1| ≤ 1. The invariants of (6.13)
are given as

J2 = 1
12c

2
2 − 1

4c1c3, J3 = 1
216c

3
2 − 1

48c1c2c3 + 1
16c

2
3,

and |J2| = O(T 1/3) and |J3| = O(T 1/2). Hence the discriminant of (6.13)
is O(T ). On the other hand, the discriminant is divisible by c23, hence
|c3| = O(T 1/2). Now J2 = O(T 1/3) together with |c3| = O(T 1/2) imply
|c2| = O(T 1/4). We conclude that there are O(T 3/4) possibilities for the
triple (c1, c2, c3).

We also need to invoke the works of Evertse and Akhtari–Okazaki on the
number of solutions of a given Thue–Mahler equation, which we recall now.
A Thue–Mahler equation is about a homogeneous binary form h(u, v) ∈
Z[u, v] and a finite set S of prime numbers, to which one associates the
equation

(6.14) h(u, v) = ±
∏
pi∈S

peii

where ei are nonnegative integers, and u, v are relatively prime integers.
A Thue–Mahler equation with S = ∅ is called a Thue equation. We will rely
on a corollary which is easily implied by the following theorem of Evertse.

Theorem 6.9 ([4, Corollary 2]). Let r be the degree of h(u, v), and as-
sume that h(u, v) has at least three linearly independent linear factors over
a sufficiently large number field. Let S be a finite set of prime numbers of
cardinality s. Then the associated equation (6.14) has at most

(6.15) 2× 7r
3(2s+3)

solutions.

We are concerned about the case when h(u, v) is a quartic with nonzero
discriminant, and S is empty. The following corollary is a direct consequence
of Evertse’s theorem.

Corollary 6.10. Let Q(u, v) be a binary quartic form with nonzero
discriminant. The equation

(6.16) Q(u, v) = ±1

has at most

(6.17) 2× 74
3·3 < 3.63× 10162

solutions.

Remark 6.11. Theorem 6.9 will not be used in what follows, and we
only need its consequence, Corollary 6.10, for the proof of the main theorem.
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Despite the large size of the upper bound, we note that it is independent
of Q(u, v). On the other hand, we have a significantly better bound due
to Akhtari and Okazaki, under the additional assumption that Q(u, v) is
irreducible.

Theorem 6.12. Let Q(u, v) be an irreducible quartic equation. The as-
sociated Thue equation

(6.18) Q(u, v) = ±1

has at most 61 solutions, provided that the discriminant of Q(u, v) is greater
than an absolute constant, which is effectively computable. Here we regard a
solution (n,m) as the same as (−n,−m). If we further assume that Q(u, v)
has four linear factors defined over R, then it has at most 37 solutions.

Now the proof of Theorem 6.3 is straightforward. Indeed, from the in-
jectivity of φ, one has

N(T ) ≤
∑

Q∈X1(T )

∑
Q(n,m)=1

1 +
∑

Q∈X2(T )

∑
Q(n,m)=1

1 +
∑

Q∈X3(T )

∑
Q(n,m)=1

1

where the sum over Q(n,m) = 1 means the following: the sum is taken over
the set of pairs (n,m) such that Q(n,m) = 1, modulo the identification
of (n,m) and (−n,−m). Note that (6.6) shows that two solutions (n,m)
and (−n,−m) should be counted once. By Theorems 6.7 and 6.12, one has∑

Q∈X1(T )

∑
Q(n,m)=1

1

=
∑

Q∈X1
0 (T )

∑
Q(n,m)=1

1 +
∑

Q∈X1
1 (T )

∑
Q(n,m)=1

1 +
∑

Q∈X1
2 (T )

∑
Q(n,m)=1

1

= 37 · 2π2

405
T 5/6 + 61 · 16π2

405
T 5/6 + 61 · 4π2

405
T 5/6 +O(T 3/4+ε)

< (31.5 . . .)T 5/6 +O(T 3/4+ε),

while Theorem 6.7, Proposition 6.8, and Corollary 6.10 imply that∑
Q∈X2(T )

∑
Q(n,m)=1

1 = O(T 3/4),
∑

Q∈X3(T )

∑
Q(n,m)=1

1 = O(T 2/3+ε),

both of which have smaller orders than T 5/6. We conclude that

N(T ) < (31.5 . . .)T 5/6

for all sufficiently large T > 0. Combining this with Lemma 6.2, we obtain
the desired upper bound on the average number of integral points on Ya,b.
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