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Abstract. We construct torsion Selmer pointed sets, which are a discrete
analogue of Selmer schemes. Such torsion objects were first defined by K.
Sakugawa under a hypothesis, who also established a control theorem for them.
We remove the hypothesis and provide the discrete analogue in full generality,
to which Sakugawa’s control theorem extends as well. As a key ingredient, we
use Lazard’s theory to build the unipotent completion of a finitely generated
group over p-adic integers.

1. Introduction

Selmer groups provide an indispensable tool for describing the arithmetic of
elliptic curves. A number of major advances therein relied on analyses of them.
In fact, various kinds of Selmer groups and their interrelationship are investigated
altogether, while a specific kind may have an advantage for a particular purpose.
For example, torsion Selmer groups are often amenable to arithmetic computation,
while the p-adic species named after Greenberg [4] or Bloch-Kato [2] are the very
subject of Iwasawa theory and deep conjectures connecting to special values of
L-functions.

The utility of Selmer groups, as far as Diophantine questions on curves are con-
cerned, had seemed limited to elliptic ones. However, the view became outdated
when Selmer schemes for hyperbolic curves were proposed in [6], whose defini-
tion extends that of Bloch-Kato Selmer groups. A notable achievement in this
direction includes [1].

In view of fruitful interactions between different kinds of Selmer groups, it is
natural to ask whether Selmer schemes have variants. In fact, K. Sakugawa [8]
suggested an analogue called torsion Selmer pointed sets. Moreover, he established
an analogue of the control theorem [7, §2,b)], a vital step in the Iwasawa-theoretic
approach to Selmer groups. It suggests that torsion Selmer pointed sets may play
the role comparable to that of torsion Selmer groups.

We note that Sakugawa’s construction of torsion Selmer pointed sets depended
on a hypothesis: the prime p is larger than the unipotency of the coefficient group
of the Selmer scheme. Also, the control theorem for them required the same
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hypothesis in order to ensure the existence of the object under investigation. In
this short paper, we extend his definition so that the hypothesis is unnecessary and
thereby supply torsion Selmer pointed sets in full generality. Moreover, in view
of our result, the control theorem, namely Theorem 7.7 of [8], no longer requires
the hypothesis.

The key algebraic ingredient of the extended definition is the unipotent com-
pletion with integral coefficients. Recall that, for any field k of characteristic
zero and a finitely generated group Γ, the k-unipotent completion of Γ is a pro-
unipotent algebraic group over k satisfying a universal property. When k = Qp

for some prime p, we show that the completion has a canonical model over Zp, as
a consequence of the next theorem we establish in the present article.

Theorem (Theorem 2.4). Let U be a finite-dimensional nilpotent Lie algebra over
Qp. Suppose that C ⊂ U is a compact subset. Then, C is contained in a powerful
integral model of U.

It is a group-theoretic result which is independent of our immediate purpose.
For us, its consequence, Corollary 3.2 shall provide the extended definition of the
torsion Selmer pointed sets.

We note that the assumption on the nilpotency of U is strictly necessary. Indeed,
one finds a counterexample by taking u to be the Lie algebra of traceless 2 × 2
matrices over Zp, and C to be the compact subset p−2u inside U = u⊗Qp.

We summarize the rest of the paper. In § 2, we prove Theorem 2.4, including
a brief review of Lazard’s work. In § 3, we conclude the paper by explaining how
our result extends Sakugawa’s definition and control theorem.

Acknowledgement. The author is grateful to an anonymous referee for pointing
out and correcting an error and providing helpful comments. This work was
supported by the National Research Foundation of Korea1 and Samsung Science
and Technology Foundation2.

2. Unipotent completion over p-adic integers

2.1. Unipotent completion over a field of characteristic zero. We review
the notion of unipotent completion following the appendix of [5]. Let Γ be a
finitely generated group and k a field of characteristic zero. Consider pairs of the
form (U, u) where U/k is a unipotent algebraic group over k and u : Γ→ U(k) is a
group homomorphism from Γ into the group of k-points of U . A morphism from
(U, u) to (V, v) is, by definition, a morphism f : U → V such that the diagram

1grant funded by the Korea government, No. 2020R1C1C1A01006819
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below, obtained by passing to k-points,

Γ
u

}}

v

!!
U(k)

f // V (k)

is commutative.
For a unipotent group U , index the descending central series as U1 = U , U2 =

[U,U ], and so on. The unipotency of U refers to the smallest positive n such that
Un = 0.

For a given positive integer n, the unipotent completion of Γ over k of index
n is defined to be the universal object among all (U, u) with a group U with
unipotency at most n. They exist for any n, and form a projective system · · · →
Un+1 → Un → · · · by the universal property, called the pro-unipotent completion
of Γ over k.

When k = Qp, the universal map un : Γ→ Un(Qp) factors through the profinite

completion Γ→ Γ̂, giving rise to a continuous homomorphism

ûn : Γ̂→ Un(Qp).

By Appendix A.3, Theorem A.6 of [5], ûn has a universal property similar to that

of un, among pairs (Û , û) for which we additionally require that û is a continuous
homomorphism.

In the rest of the section, we explain how to construct a model over Zp of the
Qp-group Un, and show that it satisfies a universal property. The construction is
carried out on the level of Lie algebras, where we use Lazard’s theory.

2.2. A review of Lazard’s theory. Let u be a free Zp-module of finite rank
equipped with a Lie algebra structure denoted by [−,−]. We call such an object
a Lie algebra over Zp. We recall a key definition.

Definition 2.1. A Lie algebra u over Zp is powerful if [a, b] ∈ 2pu for all a, b ∈ u.

Lazard’s theorem says powerful Lie algebras give rise to p-adic Lie groups in
terms of the Baker-Campbell-Hausdorff formula. Since the formula involves ratio-
nal numbers with growing denominators, the convergence of the formula depends
on suitable p-adic estimates. We first set notation for the formula and recall the
estimate, following the exposition [3] on Lazard’s work.

To lighten the notation, put

[x1, · · · , xn+1] =

{
[x1, x2] if n = 1

[[x1, · · · , xn], xn+1] if n > 1

for any x1, · · · , xn+1 ∈ u. For a positive integer e, put [x, y](e) = [x, y, · · · , y]
where y is repeated e-times. In particular, [x, y] = [x, y](1). For a pair (e1, e2) of
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positive integers, put [x, y](e1,e2) = [[x, y](e1), x](e2). For an n-tuple e = (e1, · · · , en)
of positive integers with n ≥ 2, put

[x, y]e =

{
[[x, y](e1,··· ,en−1), x](en) if n is even

[[x, y](e1,··· ,en−1), y](en) if n is odd.

Finally, let 〈e〉 = e1 + · · ·+ en. We are ready to state the promised formula.

Theorem 2.2 (Baker-Campbell-Hausdorff formula). There exists a rational con-
stant qe ∈ Q for each vector e of positive integers such that

log(exp(x) · exp(y)) = x+ y +
∞∑
n=2

∑
〈e〉=n−1

qe[x, y]e

in the ring of formal power series in two non-commuting variables x and y.

Proof. See Definition 6,26, Proposition 6.27 and Theorem 6.28 of [3, p.115-116].
�

For our purpose, we need a p-adic estimate of qe.

Theorem 2.3. Let be e = (e1, · · · , en) an n-tuple of positive integers. If p > 2,
we have pn−1qe ∈ pZp. If p = 2, we have 22n−2qe ∈ 4Z2.

Proof. See Theorem 6.28 of [3, p.116]. �

2.3. An application. Let U be a finite-dimensional Lie algebra over Qp. A lattice
in U refers to a closed finitely-generated Zp-submodule u ⊂ U such that U/u is
discrete. An integral model of U refers to a lattice closed under Lie bracket. An
integral model is called powerful if it is a powerful Lie algebra over Zp.

Theorem 2.4. Let U be a nilpotent Lie algebra over Qp. Suppose that C ⊂ U is
a compact subset. Then, C is contained in a powerful integral model of U.

Proof. Let U• be the descending central series, with U1 = U, U2 = [U,U], and
so on. Put Um = U/Um+1 for all m ≥ 0. Let n be the smallest positive integer
such that Un = 0. We proceed by induction on n. If n = 1, there is nothing to
prove. If n = 2, then we obtain the desired powerful integral model by taking the
Zp-module generated by C.

Let n ≥ 3 and assume that the assertion holds true for n− 1. Without loss of
generality, assume that C is a finiteley generated Zp-module. Consider the short
exact sequence

0→ Un−1 → U
π−→ Un−2 → 0

where π denotes the natural projection. By the induction hypothesis, one can
find a Qp-basis (xα)α∈A for Un−2 such that

un−2 := {
∑
α∈A

λαxα : λα ∈ Zp}
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is a powerful integral model of Un−2 containing π(C). In particular, if we define
λγαβ ∈ Qp by [xα, xβ] =

∑
γ∈A λ

γ
αβxγ, then λγαβ ∈ 2pZp for all α, β, γ ∈ A.

To proceed, find a basis for U of the form (zα)α∈A∐
A′ such that π(zα) = xα for

all α ∈ A, that (zα′)α′∈A′ is a Qp-basis of Un−1, and that
∑

α′∈A′ Zpzα′ contains
C ∩ Un−1. Then, we have

[zα, zβ] =
∑
γ∈A

λγαβzγ +
∑
γ′∈A′

λγ
′

αβzγ′ .

Our choice of zα’s ensure that λγαβ ∈ 2pZp for all α, β, γ ∈ A. Also ensured is that

λγαβ = 0 whenever α ∈ A′ or β ∈ A′.
Choose a sufficiently large t > 0 and define a new basis (z̃α)α∈A∐

A′ by

z̃α =

{
zα if α ∈ A,
p−tzα if α ∈ A′.

Then, we have

[z̃α, z̃β] =
∑
γ∈A

λ̃γαβ z̃γ +
∑
γ′∈A′

λ̃γ
′

αβ z̃γ′

for some λ̃γαβ ∈ Qp. We have the relation

λ̃γαβ =


λγαβ if α, β, γ ∈ A,
ptλγαβ if α, β ∈ A, γ ∈ A′,
0 if α ∈ A′ or β ∈ A′.

It follows that if t is large enough, λ̃γαβ ∈ 2pZp for all α, β, γ ∈ A
∐
A′. The

Zp-span of A
∐
A′ yields the desired powerful integral model. �

Example 2.5. Assume p > 2 for simplicity. Let U be the Lie algebra of upper
triangular 3 × 3 matrices over Qp with zeroes on the diagonal, where the Lie
bracket is given by the commutator. Fix an integer r, and let C ⊂ U be the
subset of matrices with entries in prZp. Then, C is a powerful integral model for
U if and only if r ≥ 1. Indeed, it follows from the identity0 pra prc

0 0 prb
0 0 0

 ,
0 prx prz

0 0 pry
0 0 0

 = p

0 0 pr × pr−1(ay − bx)
0 0 0
0 0 0


for a, b, c, x, y, z ∈ Zp. If r < 1, then C is properly contained in some powerful

integral model. Denoting by L ⊂ U the Zp-submodule generated by
[
0 0 1
0 0 0
0 0 0

]
, we

claim that such a model can be found as C + pmL for any m ≤ 2r − 1. Indeed,
the identity0 pra pmc

0 0 prb
0 0 0

 ,
0 prx pmz

0 0 pry
0 0 0

 = p

0 0 pm × p2r−1−m(ay − bx)
0 0 0
0 0 0


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verifies the claim.

Theorem 2.4 motivates the following definition:

Definition 2.6. For a compact subset C of a nilpotent Lie algebra U over Qp, we
define the powerful envelope of C, denoted by env(C) to be

env(C) =
⋂
u⊃C

u

where the intersection is taken over all powerful integral models of u containing
C.

Note that env(C) is a powerful Lie algebra. Indeed, Theorem 2.4 implies that
there is at least one powerful integral model containing C, while an intersection
of powerful Lie algebras remains powerful.

2.4. Integral unipotent completion. Let Γ be a finitely generated group and

p a prime. For each n, the unipotent completion ûn : Γ̂→ Un(Qp) has a compact
image, say Cn. The envelop env(log(Cn)), which we denote by un, is a powerful
Lie algebra. Let Un be the corresponding integral model of Un.

Definition 2.7. The flat group scheme Un/Zp is called the integral unipotent com-
pletion of Γ over Zp of index n.

The above definition is justified by the following universal property.

Corollary 2.8. The map Γ → Un(Zp) is universal among all powerful Lie al-
gebras u with corresponding group U of unipotency at most n, equipped with a
homomorphism u : Γ→ U(Zp).

Proof. Use the universal property of Un and Definition 2.6. �

2.5. A graded variant. We consider the graded variant of the integral unipotent
completion. Assume that U is graded in positive degrees as

U =
n⊕
j=1

U(j)

and the Lie bracket maps U(j1)×U(j2) into U(j1+j2). We adopt the convention that
a lattice u of U necessarily preserves grading, in the sense that u =

⊕
j u(j) and

for each j u(j) is a lattice in U(j).
Assume in addition that U is nilpotent. Given a family C = (Cj)j of compact

subsets Cj ⊂ U(j), there is a powerful integral model of u such that Cj ⊂ u(j) for
each j. Indeed, u produced in the proof of Theorem 2.4 is graded. We proceed to
define env(C) to be the intersection of all graded powerful integral models.
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3. Torsion Selmer pointed sets and the control theorem

3.1. Selmer schemes and varieties. We review the notion of Selmer schemes.
Let F be a number field with a fixed algebraic closure F̄ . For a finite set S of
places of F , let FS be the maximal extension of F in F̄ unramified outside S,
and put GF,S = Gal(FS/F ). When U is a unipotent Qp-algebraic group together
with a continuous action of GF,S on U through group automorphisms, one can
define, following [6, p.654], a suitable Galois cohomology set H1

f (GF,S, U(Qp))

consisting of classes in H1(GF,S, U(Qp)) satisfying certain local conditions. One
can often identify H1

f (F,U(Qp)) with the set of Qp-points of a scheme denoted by

H1
f (GF,S, U). Such is scheme is called a Selmer variety in [6], but it is not known

to be a variety in general, whence the name of Selmer scheme is logically more
appropriate. For our immediate purpose, the representability is unimportant and
we will simply call H1

f (F,U(Qp)) a Selmer variety.

3.2. Sakugawa’s control theorem. Suppose that the coefficient group U(Qp) in
a Selmer variety is obtained as the unipotent completion of an etale fundamental
group. That is to say, it is equipped with a continuous group homomorphism

u : π → U(Qp)

where π is the geometric etale fundamental group of a based curve defined over
F . In particular, π is the profinite completion of the underlying topological fun-
damental group. If we take a sufficiently large S, then GF,S acts on π and the
action descends to U(Qp).

Sakugawa constructed torsion Selmer pointed sets as a discrete analogue of
the Selmer variety H1

f (GF,S, U(Qp)). The construction uses as coefficients certain
finite subquotients of π.

In [8, See Remark 4.2 and § 7.1], such subquotients are defined and investigated
under the assumption m < p, where m is the unipotency of U . Moreover, under
the same assumption, an analogue of Mazur’s control theorem [8, Theorem 7.7]
was established.

3.3. Extended definition. Let u be the graded Lie algebra associated to the
maximal pro-p quotient of π, as defined in [8, Def. 7.1]. It is free as a Zp-module
[8, Lemma 7.4]. Let env(u) be the (graded) powerful envelop of u in U := u⊗ZpQp.
Note that env(u) is also a graded Lie algebra. Put u′ = env(u). This has no effects
when m is small:

Proposition 3.1. If m < p, then u = u′.

Proof. Under the assumption, the coefficients qe involved in the group law are
p-integral. See [3, p. 123], the remark after Theorem 6.28 therein. �

For any a ∈ Zp, viewed as a multiplicative monoid, we follow [8, § 6] and define
〈a〉 : u → u by the formula 〈a〉(xj)j = (ajxj)j, where xj denotes the degree-j
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component of x = (xj)j ∈ u. Then, by the functoriality of powerful envelop, it
induces a map 〈a〉 : u′ → u′. The next corollary is a consequence of Theorem 2.4.

Corollary 3.2. The powerful Lie algebra u′ satisfies the following properties.

(1) GF,S acts continuously on u′ and on u′ ⊗ Zp/prZp for all r ≥ 1,
(2) the action is through Lie algebra automorphisms, and
(3) the Baker-Campbell-Hausdorff formula turns u′⊗Zp/prZp into a group for

all r ≥ 1 on which GF,S acts via group automorphisms.

Proof. Recall that GF,S acts as group automophisms of π, which in turn acts
as Lie algebra automorphisms on u. On the other hand, the envelop is defined
as the intersection of all powerful integral models containing u, so GF,S sends
such a model into another. It follows that the GF,S-action preserves u′. Now
the group pru′ is again a powerful Lie algebra which is also a Lie-ideal, so the
Baker-Campbell-Hausdorff formula turns pru′ into a normal subgroup of u′. The
GF,S-action also preserves pru′ and acts on the quotient u′ ⊗ Zp/prZp. �

As a consequence of Corollary 3.2, Definition 7.5 in [8] for H1
f (F, u′ ⊗Zp/prZp),

or more generally H1
f (F, u′⊗R/prR) for a flat Zp-algebra R, becomes valid for all

m and p. The proof of the control theorem [8, Theorem 7.7] applies word-for-word.
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