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PATH INTEGRALS AND p-ADIC L-FUNCTIONS

MAGNUS CARLSON, HEE-JOONG CHUNG, DOHYEONG KIM, MINHYONG KIM,
JEEHOON PARK, AND HWAJONG YOO

Abstract. We prove an arithmetic path integral formula for the inverse p-adic ab-
solute values of Kubota-Leopoldt p-adic L-functions at roots of unity.

1. Primes, knots, and quantum fields

1.1. Arithmetic topology. Barry Mazur [17, 18] pointed out long ago that the coho-
mological properties of Spec(OF ), the spectrum of the ring of integers of an algebraic
number field, are like those of a 3-manifold. This went with the observation that the
inclusion

Spec(k(P )) →֒ Spec(OF )

of the spectrum of the residue field k(P ) of a prime P of OF compares well to the
inclusion of a knot κ into a 3-manifold [22]. When we remove a finite collection S
of primes and consider Spec(OF ) \ S, the properties then are like a 3-manifold with
boundary obtained by removing tubular neighbourhoods of the knots. Mazur went on
to consider the cases of

Spec(Z), Spec(Z[1/p]), and Spec(Z[µp][
1

ζp − 1
]).

There, one arrives at an analogy between the covering

Spec(Z[µp∞][1/p])→ Spec(Z[µp][
1

ζp − 1
])

with Galois group
Γ := Gal(Q(µp∞)/Q(µp)) ≃ Zp
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2 PATH INTEGRALS AND P -ADIC L-FUNCTIONS

and the maximal abelian covering

Dκ → S3 \ κ,

which has group of deck transformations isomorphic to Z. In Iwasawa theory, the main
object of study is

V = Gal(M/Q(µp∞)),

the Galois group of the maximal abelian unramified p-extension M of Q(µp∞), acted
on by the Iwasawa algebra

Zp[[Γ]] ≃ Zp[[T ]].

The isomorphism here comes from γ − 1 7→ T for a fixed topological generator γ of
Γ. There is also an action of Gal(Q(µp)/Q) (which can be realised as a subgroup of
Gal(Q(µp∞)/Q)), according to which V splits into isotypic components Vk via the Te-

ichmüller character ω : Gal(Q(µp)/Q) → Z×
p and its powers ωk. The main conjecture

of Iwasawa theory [20] as proved by Mazur and Wiles relates the determinants of these
isotypic components to various branches of the p-adic zeta function. (For general back-
ground, we refer the reader to Washington’s excellent book [27].) Namely, for an odd
prime p and for j = 1, 3, . . . , p−2 odd, the Kubota-Leopoldt p-adic L-function Lp(ω

j , s)
is the continuous function on Zp such that

Lp(ω
j, ℓ) = (1− p−ℓ)ζ(ℓ)

for negative integers ℓ ≡ j mod p − 1. There is a unique power series zj(T ) ∈ Zp[[T ]]
such that

zj((1 + p)s − 1) = Lp(ω
j, s),

enabling us to identify zj(T ) with the p-adic L-function itself. The main conjecture
says that z1−k(T ) is the determinant of the Zp[[T ]]-module Vk for k 6= 1 odd. Mazur’s
main observation in [17] was that the Alexander polynomial of a knot also has a precise
definition as a determinant of the module

H1(Dκ,Z)

for

Z[Z] ≃ Z[t, t−1],

strengthening the circle of analogies that has now come to be known as arithmetic

topology.

1.2. Quantum field theory and knots invariants. Meanwhile, in the late 1980s,
EdwardWitten [28] gave a remarkable construction of the Jones polynomial of a knot us-
ing the methods of quantum field theory, which were then made rigorous by Reshetikhin
and Turaev [24]. Here, we have a space A of SU(2) connections on S3 acted upon by a
group G of gauge transformations. The knot κ defines a Wilson loop function

Wκ : A → C

that sends a connection A to

Tr(ρ(Holκ(A))),
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the trace of the holonomy of the connection around κ evaluated in the standard repre-
sentation ρ of SU(2). (The importance of such a function should not be surprising at
all to number-theorists.) There is also a ‘global’ Chern-Simons function given by

CS(A) =
1

8π2

∫

Tr(A ∧ dA+
2

3
A ∧A ∧A),

which is only gauge-invariant up to integers. Witten’s result is then
∫

A/G
Wκ(A) exp(2πinCS(A))dA = Jκ

(

exp

(

2πi

n+ 2

))

,

equating a path integral with the value of the Jones polynomial Jκ of κ at a root
of unity. (The reader should beware that many different normalisations exist in the
literature.) A somewhat complicated analogue for the Alexander polynomial can be
found in [2, 7, 8, 9, 21, 26].

1.3. Arithmetic path integrals. We would like to prove a simple arithmetic analogue
of Witten’s formula for p-adic L-functions. Following the framework of arithmetic topo-

logical quantum field theory set up in [15, 16, 5, 6, 13, 23], our goal is to represent the
p-adic L-function as an arithmetic path integral, thereby incorporating the perspective
of topological quantum field theory into arithmetic topology in a rather concrete fashion
and strengthening the analogy envisioned by Mazur. It should be admitted right away
that we do not achieve this goal. However, we do find a result about its p-adic valuation
that appears to be interesting. To describe this, we go on to define the relevant space
of ‘arithmetic fields’.

Let q = pn where p is an odd prime and n is a positive integer. We set K = Q(µq)
and let

X = Spec (Z[ζq]) \(ζq − 1),

where ζq is a primitive q-th root of unity. We fix an integer m ≥ 1 and define the space
of fields as

Fm := H1(X,µpm)×H1
c (X,Z/pmZ),

where H1
c denotes compactly supported étale cohomology [19, Chapter 2]. This is an

abelian moduli space of principals bundles together with its dual, a setting that allows
the definition of topological actions in physics in arbitrary dimension and even on non-
orientable manifolds [8]. The BF-action is the map

BF : Fm →
1

pm
Z/Z

that takes (a, b) ∈ Fm to
inv(da ∪ b),

where
d : H1(X,µpm)→ H2(X,µpm)

is the Bockstein map coming from the exact sequence

1→ µpm → µp2m → µpm → 1

and

inv : H3
c (X,µpm)

∼
−→

1

pm
Z/Z
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is the invariant map [18].
There is a natural action of G = Gal(K/Q) on the space of fields Fm, and we let

G′(≃ Gal(Q(µp)/Q)) ⊂ G be the unique subgroup of G of order p − 1. Since p − 1 is
not divisible by p, G′ acts semi-simply on Fm. Let us define

Fm
k := H1(X,µpm)k ×H1

c (X,Z/pmZ)−k,

i.e. on the first factor we take the ωk-eigenspace, and on the second factor we take the
ω−k-eigenspace.

Theorem 1.1. Let k be odd and different from 1. Then we have

|

pn−1
∏

j=0

z1−k(exp(2πij/p
n)− 1)−1|p = lim

m→∞

∑

(a,b)∈Fm
k

exp (2πiBF (a, b))

Remark 1.2. Note that the variable T here corresponds to γ − 1, where γ is a topologi-
cal generator of Γ. Thus, the value of T on exp(2πij/pn) − 1 corresponds to the value
exp(2πij/pn) assigned to γ. In the Alexander polynomial, the variable t indeed corre-
sponds to a generator of H1(S

3 \ K,Z). Thus, in the analogy of arithmetic topology,
the values occurring on the left of our formula correspond exactly to the values of the
standard variable in topology at roots of unity. We could use the Weierstrass prepara-
tion theorem and the vanishing of the µ-invariant [10] to replace zj by a distinguished
polynomial Pj , such that

zj(T ) = Pj(T )uj(T )

for a unit uj(T ). With this we can restore the variable t = T + 1 and put Qj(t) =
Pj(t− 1). The left-hand side of our formula can then be written

|

pn−1
∏

j=0

Q1−k(exp(2πij/p
n))−1|p.

One might argue that the Qj are the true analogues of the Alexander polynomial.

Remark 1.3. Of course since we are taking the p-adic absolute value, the formula is the
same if we change zk by a unit. Hence, it really is about characteristic power series
rather than the precise choice of p-adic L-functions. Nevertheless, since the p-adic
L-functions are the objects of central interest in number theory, we have stated the
theorem in these terms. Obviously, for this we need the main conjecture of Iwasawa
theory which we will take for granted in the rest of this paper.

Remark 1.4. In physics, it’s common to be vague about the domain of the path integral.
That is, one imagines a sequence of inclusions

C ⊂ A1 ⊂ A2 ⊂ · · ·

containing the space C of classical fields (solutions to the equation of motion) and
integrals over An giving successively more information. On the other hand, after some
point, further enlargement shouldn’t matter. That is, the inclusion C ⊂ An into a
sufficiently flabby space should play a role similar to an acyclic resolution of a complex
where any two resolutions are suitably homotopic. In gauge theory, for example, the
space of C∞ connections is thought to be an adequate domain. Even there, one could
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include discontinuous or distributional connections in the flavour of Feynman’s original
heuristic arguments with jagged paths. The limit we are taking can be interpreted as

∫

Fk

exp(2πiBF (a, b))dadb,

an integral over the domain

Fk = lim
←−
m

H1(X,µpm)k × lim
−→
m

H1
c (X,Z/pmZ)−k

= H1(X,Zp(1))k ×H1
c (X,Qp/Zp)−k.

This has very much the flavour of a space of distributional fields.

Remark 1.5. The obvious challenge is to remove the absolute value from the p-adic
L-value, incorporating the unit information. In the analogy with physics, a unit is like
a ‘phase’, leading one to believe that it can be recovered from a refinement of the given
path integral.

2. Path integrals for cyclotomic integers

Let ClK be the ideal class group of K and O×
X the group of units in Z[µq][1/(ζq − 1)].

A repetition of the computations found in [4] shows that the arithmetic path integral
∑

(a,b)∈Fm

exp (2πiBF (a, b))

equals
∣

∣pm · ClK [p2m]
∣

∣ ·
∣

∣

∣
O×

X/
(

O×
X

)pm
∣

∣

∣
· |ClK/pm| .

Our goal will be to prove an equivariant version of this formula.
With the definitions of the previous section, we have that

F
m =

p−2
⊕

k=0

F
m
k .

We will generally denote by a subscript (·)k the ωk-isotypic component of a Zp-module
with G′-action. We now analyze how the action of G′ on Fm interacts with the BF-
functional. More precisely, we will see that the BF-functional splits:

⊕p−2
k=0BFk :

p−2
⊕

k=0

F
m
k →

1

pm
Z/Z.

To see this, start by letting DivX be the free abelian group generated by the closed
points in X. Then, as is explained in [4, Section 2], we have that

(2.1) H i(X,µpm) =



















µpm(K) for i = 0,

Z1/B1 for i = 1,

ClK/pm for i = 2,

0 for i > 2,



6 PATH INTEGRALS AND P -ADIC L-FUNCTIONS

where
Z1 = {(a, I) ∈ K∗ ⊕DivX : div(a) + pmI = 0}

and
B1 = {(a

pm ,− div(a)) ∈ K∗ ⊕DivX : a ∈ K∗}.

As is shown in [1, Section 4], the map d : H1(X,µpm)→ H2(X,µpm) takes

(a, I) ∈ H1(X,µpm)

to I ∈ ClK/pm. By this observation, it is clear that the map d is equivariant. Let us
now note further that the Galois action on

H3
c (X,µpm) ≃

inv

1

pm
Z/Z

is trivial. This clearly implies that the BF-functional splits into direct sums as claimed,
since if

a ∈ H1(X,µpm)i and b ∈ H1
c (X,Z/pmZ)j ,

we see that da∪ b lands in the ωi+j-eigenspace of H3
c (X,µpm), which is non-zero if and

only if i+ j = 0 (mod p− 1).
By the above analysis of the G′-action, we see that the sum

∑

(a,b)∈Fm

exp (2πiBF (a, b))

splits:

p−2
∏

k=0

∑

(a,b)∈Fm
k

exp (2πiBF (a, b)) .

Using the description of the map d above (in particular that it is equivariant), together
with the non-degeneracy of the Artin–Verdier pairing, we find that

Proposition 2.2.
∑

(a,b)∈Fm
k

exp (2πiBF (a, b)) =
∣

∣

(

pm · ClK [p2m]
)

k

∣

∣ ·
∣

∣

∣

(

O×
X/

(

O×
X

)pm
)

k

∣

∣

∣
· |(ClK/pm)k| .

Proof. If a 6∈ ker d, then
∑

b∈H1
c (X,Z/pmZ)−k

exp (2πiBF (a, b)) =
∑

b∈H1
c (X,Z/pmZ)−k

exp (2πi · inv(da ∪ b)) = 0

because the Artin–Verdier pairing is non-degenerate. Since exp (2πiBF (a, b)) = 1 for
any a ∈ ker d, we have

∑

(a,b)∈Fm
k

exp(2πiBF (a, b)) = | ker d ∩H1(X,µpm)k| · |H
1
c (X,Z/pmZ)−k|.

Also, we have
(ker d)k = ker d ∩H1(X,µpm)k

since the map d is equivariant. Furthermore, d is the composite of two maps: the
surjective map f1 : H

1(X,µpm)→ ClK [pm], and then the reduction map

f2 : ClK [pm]→ ClK/pm,
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which are both equivariant as well. The kernel of f1 is precisely O×
X/pm, while the

kernel of f2 equals pm · ClK [p2m]. By taking eigenspaces, we have

|(ker d)k| = |(O
×
X/pm)k| · |(p

m · ClK [p2m])k|.

Finally, H1
c (X,Z/pm)−k is dual to H2(X,µpm)k and so the result follows. �

It is interesting to realize the path integral
∑

(a,b)∈Fm
k

exp (2πiBF (a, b))(2.3)

as a path integral on
Y := Spec (Z) \{p}.

To achieve this, we note that the natural map π : X → Y , factors as

X
π′

−→ Y ′ π′′

−→ Y

where
Y ′ = Spec(Z[µp])\(ζp − 1).

If we consider the sheaf π∗(Z/p
mZ), it is easy to see that this sheaf corresponds, under

the equivalence between sheaves on Y split by π and G-modules, to the group ring

Z/pmZ[G] ∼= Z/pmZ[x, y]/
(

xp
m−1

− 1, yp−1 − 1
)

.

This group ring is isomorphic, as a G-module, to

p−2
⊕

k=0

(

Z/pmZ[x]/
(

xp
m−1

− 1
))

k

where the action of G′ on the k-th piece in the direct sum is through ωk. This calculation
shows that π∗(Z/p

mZ) splits into a direct sum

p−2
⊕

k=0

Mk

of “eigensheaves” with respect to the G′-action. Since Cartier duality commutes with
pushforward [25, Proposition D.1], we see that

π∗(µpm) =

p−2
⊕

k=0

D(Mk),

where D denotes the Cartier dual. For k = 0, 1, · · · , p− 2, we now claim that

F
m
k = H1(Y,D(Mk))×H1

c (Y,Mk).

To see this, it is enough to establish that H1(Y,D(Mk)) identifies with the ωk-eigenspace
of H1(X,µpm) and that H1

c (Y,Mk) naturally identifies with the ω−k-eigenspace of
H1

c (X,Z/pmZ).
We proceed by first noting that π∗(µpm) = (π′′

∗ ◦ π
′
∗)µpm , and that since |G′| is prime

to p, taking G′-fixed points is an exact functor. Then we have the following string of
equalities:

H0(G′,H i(X,µpm)) = H0(G′,H i(Y ′, π′
∗µpm)) = H0(G′,H i(Y ′,D(M0))) = H i(Y,D(M0)).
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The first equality follows from the fact that π′ is finite étale, the second follows from the
fact that the restriction of D(M0) to Y

′ is isomorphic to π′
∗µpm, and the last follows from

the fact that taking G′-fixed points is an exact functor. This shows that H i(Y,D(M0))
naturally identifies with the ω0-eigenspace of H i(X,µpm), and we proceed by analysing
the other eigenspaces. Let us note that

D(Mk) = D(M0)⊗ Gk,

where Gk is the sheaf which, under the equivalence between sheaves split by π′′ and
G′-modules, corresponds to Z/pmZ, but where the action of G′ is through ω−k. We
now claim that

H i(Y ′,D(Mk)) = H i(Y ′,D(M0))(ω
−k)

where H i(Y,D(M0))(ω
−k) is just H i(Y ′,D(M0)) as an abelian group, but with the

G′-action twisted by ω−k. Indeed, the pullback of

D(M0)⊗ Gk

to Y ′ is isomorphic, as an abelian sheaf, to D(M0), and looking at the Cech complex
one finds that H i(Y ′,D(M0))(ω

−k) is indeed isomorphic to H i(Y ′,D(Mk)).
Thus,

H0(G′,H i(X,µpm)(ω
−k)) = H0(G′,H i(Y ′, π′

∗µpm)(ω
−k)) = H0(G′,H i(Y ′,D(M0))(ω

−k))

which equals H0(G′,H i(Y ′,D(Mk))) = H i(Y,D(Mk)). Since

H i(X,µpm)k = H0(G′,H i(X,µpm)(ω
−k))

this gives that H i(X,µpm)k = H i(Y,D(Mk)), which is the equality we wished to prove.
Repeating the same argument for Mk then shows that

F
m
k = H1(Y,D(Mk))×H1

c (Y,Mk),

as claimed.
The realization of the path integral (2.3) as a path integral on Y is now straight-

forward. Indeed, there is a natural Bockstein map d : H1(Y,D(Mk)) → H2(Y,D(Mk))
and we define

BF : Fm
k = H1(Y,D(Mk))×H1

c (Y,Mk)→
1

pm
Z/Z

as BF (a, b) = inv(da∪ b). This realizes the path integral as a path integral on Y , which
is what we wanted to see.

3. Calculation for large values of m

We analyse the right-hand-side of the formula in Proposition 2.1 for large values of
m. If pm > |ClK |, then the first factor is one and the third factor equals the size of the
ωk-isotypic component of the p-primary part of ClK . Below, we look into the factor in
the middle. We will assume for simplicity that pm > |ClK [p∞]|.

Let U ′ ⊂ O×
X be the subgroup generated by a primitive q-th root of unity ζ and

elements of the form 1 − ζa where a = q, 2, 3, · · · , q − 1. Therefore, we have a finite
quotient A := O×

X/U ′.
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From the exact sequence

0→ U ′ → O×
X → A→ 0

and the snake lemma, we get the long exact sequence

0→ U ′[pm]→ O×
X [pm]→ A[pm]

→ U ′/(U ′)p
m

→ O×
X/(O×

X)p
m

→ A/Apm → 0.

Since

U ′[pm] ≃ O×
X [pm] ≃ µpn ,

for m ≥ n, this gives an exact sequence

0→ A[pm]→ U ′/(U ′)p
m

→ O×
X/(O×

X)p
m

→ A/Apm → 0

and the same after taking ωk-isotypic components:

0→ A[pm]k → (U ′/(U ′)p
m

)k → (O×
X/(O×

X )p
m

)k → (A/Apm)k → 0.

Note that A[pm]k ≃ Ak[p
m] and (A/Apm)k ≃ Ak/A

pm

k as |G′| has order prime to p.
Since A and hence Ak is finite, the kernel and cokernel have the same order, so that

|(U ′/(U ′)p
m

)k| = |(O
×
X/(O×

X)p
m

)k|.

Put U := U ′/µq. Since U is torsion-free, another easy snake lemma argument gives an
exact sequence

0→ µq → U ′/(U ′)p
m

→ U/Upm → 0

for m ≥ n. Thus, for k 6= 1, we get an isomorphism

(U ′/(U ′)p
m

)k ≃ (U/Upm)k.

Lemma 3.1. We have

(

U ′/(U ′)p
m)

k
=

{

{1} if k is odd and k 6= 1,

Z/pmZ if k is even.

Proof. The structure of U as a Galois module is known. Let K+ be the maximal totally
real subfield of K and let G+ = Gal(K+/Q). In [3, Theorem 3], Bass proved that there
is an isomorphism U ≃ Z[G+] as Galois modules. Thus, the assertion follows since
Z/pmZ[G+] =

⊕

k:even (Z/p
mZ[G+])k and each summand is isomorphic to Z/pmZ. �

As a consequence, for even k, we get

lim
m→∞

1

pm

∑

(a,b)∈Fm
k

exp(2πiBF (a, b)) = |ClK [p∞]k|(3.2)

and for odd k 6= 1,

lim
m→∞

∑

(a,b)∈Fm
k

exp (2πiBF (a, b)) = |ClK [p∞]k| .(3.3)
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4. Connection to p-adic L-functions: Proof of Theorem 1.1.

We interpret the right-hand side of the formula in terms of special values of the
Kubota-Leopoldt p-adic L-functions. As in the introduction, let

V = Gal(M/Q(µp∞)),

the Galois group of the maximal abelian unramified p-extension M of Q(µp∞). We now
vary n in q = pn, and denote by ClKn [p

∞] the p-primary part of the ideal class group of
Kn := Q(µpn+1). We assume in the following that k 6= 1 is odd. By the main conjecture
and the vanishing of the µ-invariant [10], we have an exact sequence

0→ A→ Vk →M → B → 0,

where A and B are finite,

M ≃
∏

j

Zp[[T ]]/(fj(T ))

and the fj(T ) are power series such that

z1−k(T ) =
∏

j

fj(T ).

Consider the action of Γn ⊂ Γ generated by γp
n

, where γ is a topological generator of
Γ. We get an equation of Γn-Euler characteristics

χ(Γn, A)χ(Γn,M)

χ(Γn, Vk)χ(Γn, B)
= 1

where
χ(Γn, ·) =

∏

|Hi(Γn, ·)|
(−1)i .

Note that
Hi(Γn, ·) ≃ H i(Γn, (·)

∨)∨,

where
(·)∨ = Hom(·,Q/Z)

is the Pontriagin dual. On the other hand, since A and B are finite, the exact sequence

0→ H0(Γn, A
∨)→ A

γpn−1
−→ A→ H1(Γn, A

∨)→ 0

and the similar one for B imply that

χ(Γn, A) = χ(Γn, B) = 1.

Therefore,
χ(Γn, Vk) = χ(Γn,M).

On the other hand, since all the extensions Kn/Q(µp) are totally ramified over the single
prime lying above p, by [11, Section 1] we get

(ClKn [p
∞])k ≃ Vk/((T + 1)p

n

− 1)Vk = H0(Γn, Vk).

By [27, Corollary 13.29], we have
Vk ≃ Za

p

for some a ≥ 0. We have the exact sequence

0→ H1(Γn, Vk)→ Vk
γpn−1
−→ Vk → H0(Γn, Vk)→ 0.
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Since H0(Γn, Vk) is finite, the operator γp
n

− 1 does not have the eigenvalue 0. Hence,

H1(Γn, Vk) = 0.

Similarly, H1(Γn,M) = 0. Thus,

|Vk/((T + 1)p
n

− 1)Vk| = |H0(Γn, Vk)| = |H0(Γn,M)| = |M/((T + 1)p
n

− 1)M |.

So finally,

|(ClKn [p
∞])k| = |Vk/((T + 1)p

n

− 1)Vk|

= |Zp[[T ]]/((T + 1)p
n

− 1, z1−k(T ))|

= |
∏

j

Zp/(z1−k(ζ
j
pn − 1))|

= |
∏

j

z1−k(ζ
j
pn − 1)−1|p

yielding the desired formula.

Remark 4.1. For even values of k, (3.2) implies the vanishing

lim
m→∞

1
∑

(a,b)∈Fm
k
exp (2πiBF (a, b))

= 0,(4.2)

which is superficially analogous to the vanishing of L(χ, s) at all negative integers when
χ is an odd Dirichlet character.
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