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1 Weingarten Calculus on computers

“RTNI - A symbolic integrator for Haar-random tensor networks”,
arXiv:1902.08539 [quant-ph] with Nechita and Koenig.



1.1 Computer packages for average over Haar
unitary matrices

Preceding packages:
e IntU, a Mathematica package, [Puchata and Miszczak (2017)].

e IntHaar, a Maple package, [Ginory and Kim (2016)].
(includes Haar orthogonal and symplectic cases.)

Our package:
RTNI (Random Tensor Network Integrator),
Mathematica and Python packages.

Differences:
e Others calculate averages of monomials in the entries of a ran-
dom unitary matrices.

e Our package calculates averages symbolically, which allows ten-
sor structures easily.



1.2 Polynomial version of Weingarten calculus

U(n): group of n x n unitary matrices, and
dU: normalized Haar measure.

Fixp € Nand let i = (i1,...,3,), 9" = (&h,...,%), 7= (J1,-- - Jp)
j" = (j1,---,J,) be p-tuples of positive integers from {1,2,... ,n}.
[Collins and Sniady (2006)]
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Here, S, is the permutation group and Wg,, (-) is called the unitary
Weingarten function. Also, note that

/L{()Uiljl---U,p]pU (U dU =0 for p#pl .



For integer n > p, the Weingarten functions can be written as

()2 2= "s3a(1)

e )\ F p means that )\ is a partition of the integer p.

e " is the character of the irreducible representation of the sym-
metric group S, specified by .

e 5),(1) is the Schur polynomial evaluated at the identity:

Ai—Aj+7—1i
S)\m(l): H J _j .

i —
1<i<j<n J

Use Murnaghan—Nakayama rule to generate the character tables of S,,.

e Non-recursive method: Young tableau.

e Recursive method: Young diagrams.



Examples.
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1.3 Graphical version

Examples - continued.

1 n
E UAU* kf Z 5k€ 67“3 Ars = Edkﬁ Z Arr .
r=1
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This means that
Tr[A]

n

E[UAU*] = I .

AV = Y Sos A= 30 L.
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This means that
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Graphical calculus [Collins and Nechita (2011)]

E[UAU*] = TA T E[UAU*| = LAT

n

Original contractions: Original contractions:

[L-end, (U, out)], [(U, in), (A, out)], [L-end, (U, out)], [(U, in), (A, out)],
[(A,in), (U, out)], [(U",in),R-end] [(A,in), (U*,in)], [(U*, out), R-end]

After: After:

[L-end, R-end], [[A, out], [A, in]] [L-end, [A, in]], [[A4, out], R-end]



1.4 “Computer version”
[id ® Tr[(UAU™):

In[1]: from IHU_source import x

In[2]: el = [["A", 1, "out", 1], ["U 1, "in", 1]]
In[3]: e2 = [["A", 1, "out", 2], ["U", 1, "in", 2]]
In[4]: e3 = [["Ux", 1, "out”, 1], ["A", 1, "in", 1]]
In[5]: e4 = [["Ux", 1, "out”, 2], ["A", 1, "in", 2]]
In[6]: e5 = [["U", 1, "out”, 2], ["Ux", 1, "in", 2]]

In[7]: g = [el, e2, e3, e4, eb]
In[8]: gw = [g,1]

In[9]: visualizeTN (gw) uﬂ\.
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E[[id ® Tr](UAU*)]:

In[10]:
In[11]:
In[12]:
In[13]:
In[14]:
Out[1]:

[["A",
[["A",

This figure is followed by the new weight 1/n in the program.

k,n = symbols('k n")
rm = ["U" ,[n, k], [n, k], nxk]
Eg = integrateHaarUnitary (gw,rm)

print (Eg)

visualize TN (Eg)
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1.5 Demo (had been done.)

To get RTNI, go to
https://github.com/MotohisaFukuda/RTNI

To get a user-friendly but limited version, called RTNI_light, go to
https://github.com/MotohisaFukuda/RTNI_light

To try a web version of RTNI_light, go to
https://motohisafukuda.pythonanywhere.com



2 Random Gaussian states

“Typical entanglement for Gaussian states”,
arXiv:1903.04126 [quant-ph] with Koenig.



2.1 Motivation and past research
Typical entanglement entropy of random bipartite quantum states.
e Lubkin('78); Lloyd & Pagels('88); Page('93); Foong & Kanno('94):
average of entanglement entropy.
e Hayden, Leung and Winter ('04):
concentration of entanglement entropy.

In the setting of random Gaussian states
e Serafini, Dahlsten, Gross & Plenio ('07):

— micto-canonical measure and canonical measure.

— inverse squared purity for subsystem of one mode is calcu-
lated.

e Us:
— direct access to symplectic eigenvalues

— the number of modes of subsystem can grow as n" with
k < 1 with the total mode is n, in the regime n — oc.

e Others:



2.2 Passive Gaussian unitary operations

The set of Gaussian unitary maps has one-to-one correspondence to
the real symplectic group Sp(2n) = {S € My,x2,(R) | STST = J}; a
Gaussian unitary evolution of a Gaussian state means, for S € Sp(2n)

M — SMST

where M is the covariance matrix of the state.

Replacing the real symplectic group Sp(2n) by the orthogonal sym-
plectic group K(2n) = Sp(2n) N O(2n), which is compact. The map

U(n) — K(2n) | |
v (e men) =3 (8 1) G 2) ()

induces the measure on K(2n).



2.3 Partial trace as (Gaussian operation

Suppose we have a Gaussian state of n-mode and want to get the co-
variance matrix of the reduced k-mode state (with redundant spaces).

For the covariance (2n x 2n) matrix M,, of the n-mode, calculate
My, = 1L, , M, 11,,
with the projection
e = (5 0.
where II,, , = diag(1,...,1, u) is a projection matrix of rank k.

k times n—k times



2.4 Symplectic eigenvalues

A valid covariance matrix (M + iJ > 0) has Williamson normal form:
there is S € Sp(2n) = {S € My,x2,(R) | SJST = J} such that

SMST = diag()\l, )\17 )\2, )\2, ceey )\n, )\n) .

where A; satisfy A\; > 1 and are called the symplectic eigenvalues .
They can be obtained by computing the spectrum of the matrix JM,
which consists of complex conjugate pairs as follows:

n

spec(JM) = U{j:z')\j} .

j=1

0, —1,
Note that J = ([n 0, )



2.5 Random Gaussian pure states

The covariance matrix M of a pure n-mode Gaussian state can be
diagonalized by Euler/Bloch-Messiah decomposition;

M=S5 (ZO” Zol) ST for some S € K(2n) .

Here, Z,, = diag(#1, ..., 2,) with z; > 1.
The induced measure on K(2n) generates random pure Gaussian states.
We call {2;}%_, the squeezing parameters. Observe that such a state
has energy:
- 1
Tr[Z,+ Z,') =) _E; where E;= 5z +1/2) .
j=1

We can understand E; as the energy in the j-th mode after a suitable
Gaussian unitary rotation.



2.6 Symplectic eigenvalues of reduced states

Let M, be the covariant matrix of k-mode, reduced from the random
state of n mode. Then,

M _1 111 II UAUT —UBU* I I1
F=o\-1n —in) \—i0BUT —UAU* ) \uill 10
where A= (Z,—2;')/2 and B=(Z,+2,)/2.
Define

) = Te [ ((TMe)? + X21r)?| =2 zk:

Here, {\;}*_, are the symplectic eigenvalues of M; and A = Tr[B]/n
is the averaged energy.

The calculation of E[f(U)] involves Weingarten calculus with S;.



2.7 Concentration

Concentration of symplectic eigenvalues:

For fixed k, suppose the energy of the initial pure Gaussian state is
universally bounded; sup,, || Z,]| < oo (n* with z < 1/8 is possible).
Then

Pr{f(U) > e} < exp(—cen)

for some universal constant ¢ > 0.

Concentration of entanglement entropy:
In addition, if A = A, is bounded below by i > 1, then

Pr{|S(M;) — S| > €} < exp (—cin)

Bp)*
for some universal constant ¢ > 0; S(-) is von Neumann entropy, and
p+1
=1 )
B(n) = log 1

is called the inverse temperature.
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