Weingarten calculus on computers and its application to

random quantum Gaussian states.

Motohisa Fukuda (Yamagata University)

Contents

1	VVCI	ngarten Calculus on computers	J
	1.1	Computer packages for average over Haar unitary matrices	4
	1.2	Polynomial version of Weingarten calculus	5
	1.3	Graphical version	8
	1.4	"Computer version"	10
	1.5	Demo (had been done.)	12
2	Ran	dom Gaussian states	13
	2.1	Motivation and past research	14
	2.2	Passive Gaussian unitary operations	15
	2.3	Partial trace as Gaussian operation	16
	2.4	Symplectic eigenvalues	17
	2.5	Random Gaussian pure states	18
	2.6	Symplectic eigenvalues of reduced states	19
	27	Concentration	20

1 Weingarten Calculus on computers

"RTNI - A symbolic integrator for Haar-random tensor networks", arXiv:1902.08539 [quant-ph] with Nechita and Koenig.

1.1 Computer packages for average over Haar unitary matrices

Preceding packages:

- IntU, a Mathematica package, [Puchała and Miszczak (2017)].
- IntHaar, a Maple package, [Ginory and Kim (2016)]. (includes Haar orthogonal and symplectic cases.)

Our package:

RTNI (Random Tensor Network Integrator), Mathematica and Python packages.

Differences:

- Others calculate averages of monomials in the entries of a random unitary matrices.
- Our package calculates averages symbolically, which allows tensor structures easily.

1.2 Polynomial version of Weingarten calculus

 $\mathcal{U}(n)$: group of $n \times n$ unitary matrices, and dU: normalized Haar measure.

Fix $p \in \mathbb{N}$ and let $i = (i_1, \ldots, i_p)$, $i' = (i'_1, \ldots, i'_p)$, $j = (j_1, \ldots, j_p)$, $j' = (j'_1, \ldots, j'_p)$ be p-tuples of positive integers from $\{1, 2, \ldots, n\}$. [Collins and Sniady (2006)]

$$\int_{\mathcal{U}(n)} U_{i_1 j_1} \cdots U_{i_p j_p} \bar{U}_{i'_1 j'_1} \cdots \bar{U}_{i'_p j'_p} dU$$

$$= \sum_{\alpha, \beta \in S_n} \delta_{i_1 i'_{\alpha(1)}} \dots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \dots \delta_{j_p j'_{\beta(p)}} \operatorname{Wg}_n(\alpha^{-1} \beta) .$$

Here, \mathcal{S}_p is the permutation group and $Wg_n(\cdot)$ is called the *unitary Weingarten function*. Also, note that

$$\int_{\mathcal{U}(p)} U_{i_1 j_1} \cdots U_{i_p j_p} \bar{U}_{i'_1 j'_1} \cdots \bar{U}_{i'_p, j'_{p'}} dU = 0 \quad \text{for} \quad p \neq p'.$$

For integer $n \geq p$, the Weingarten functions can be written as

$$Wg_n(\sigma) = \frac{1}{(p!)^2} \sum_{\lambda \vdash n} \frac{(\chi^{\lambda}(e))^2}{s_{\lambda,n}(1)} \chi^{\lambda}(\sigma) .$$

- $\lambda \vdash p$ means that λ is a partition of the integer p.
- χ^{λ} is the character of the irreducible representation of the symmetric group S_p specified by λ .
- $s_{\lambda,n}(1)$ is the Schur polynomial evaluated at the identity:

$$s_{\lambda,n}(1) = \prod_{1 \le i \le n} \frac{\lambda_i - \lambda_j + j - i}{i - j}$$
.

Use Murnaghan–Nakayama rule to generate the character tables of $\mathcal{S}_p.$

- Non-recursive method: Young tableau.
- Recursive method: Young diagrams.

Examples.

$$\operatorname{Wg}_n((1)) = \frac{1}{n}, \quad \operatorname{Wg}_n((1,1)) = \frac{1}{n^2 - 1}, \quad \operatorname{Wg}_n((2)) = \frac{-1}{n(n^2 - 1)}.$$

$$\int_{\mathcal{U}(n)} U_{ij} \bar{U}_{i'j'} dU = \sum_{\alpha, \beta \in S_1} \delta_{i_1 i'_{\alpha(1)}} \delta_{j_1 j'_{\beta(1)}} \operatorname{Wg}_n(\alpha^{-1}\beta) = \frac{1}{n} \delta_{ii'} \delta_{jj'}.$$

$$\mathbb{E}[(UAU^*)_{k\ell}] = \sum_{r,s=1}^n \mathbb{E}[U_{kr}A_{rs}U_{s\ell}^*] = \sum_{r,s=1}^n \mathbb{E}[U_{kr}A_{rs}\bar{U}_{\ell s}]$$
$$= \sum_{r=1}^n \frac{1}{n}\delta_{k\ell}\,\delta_{rs}\,A_{rs}.$$

$$\mathbb{E}[(UA\bar{U})_{k\ell}] = \sum_{r,s=1}^{n} \mathbb{E}[U_{kr}A_{rs}\bar{U}_{s\ell}] = \sum_{r,s=1}^{n} \frac{1}{n} \delta_{ks} \, \delta_{r\ell} \, A_{rs} .$$

1.3 Graphical version

Examples - continued.

$$\mathbb{E}[(UAU^*)_{k\ell}] = \sum_{r,s=1}^{n} \frac{1}{n} \delta_{k\ell} \, \delta_{rs} \, A_{rs} = \frac{1}{n} \delta_{k\ell} \sum_{r=1}^{n} A_{rr} .$$

This means that

$$\mathbb{E}[UAU^*] = \frac{\text{Tr}[A]}{n} I_n .$$

$$\mathbb{E}[(UA\bar{U})_{k\ell}] = \sum_{l=1}^{n} \frac{1}{n} \delta_{ks} \, \delta_{r\ell} \, A_{rs} = \sum_{l=1}^{n} \frac{1}{n} A_{lk} .$$

This means that

$$\mathbb{E}[UAU^*] = \frac{1}{4}A^T.$$

Graphical calculus [Collins and Nechita (2011)]

$$\mathbb{E}[UAU^*] = \frac{\text{Tr}[A]}{n} I_n \qquad \qquad \mathbb{E}[UAU^*] = \frac{1}{n} A^T$$

Original contractions:

Original contractions:

$$\begin{split} & [\mathsf{L}\text{-end}, (U, \mathsf{out})], [(U, \mathsf{in}), (A, \mathsf{out})], \ \ [\mathsf{L}\text{-end}, (U, \mathsf{out})], [(U, \mathsf{in}), (A, \mathsf{out})], \\ & [(A, \mathsf{in}), (U^*, \mathsf{out})], [(U^*, \mathsf{in}), \mathsf{R}\text{-end}] \ \ [(A, \mathsf{in}), (U^*, \mathsf{in})], [(U^*, \mathsf{out}), \mathsf{R}\text{-end}] \end{split}$$

After: After:

 $[\mathsf{L}\text{-end},\mathsf{R}\text{-end}],[[A,\mathsf{out}],[A,\mathsf{in}]] \qquad [\mathsf{L}\text{-end},[A,\mathsf{in}]],[[A,\mathsf{out}],\mathsf{R}\text{-end}]$

1.4 "Computer version"

 $[id \otimes Tr](UAU^*)$:

```
In[1]: from IHU_source import *
In[2]: e1 = [["A", 1, "out", 1], ["U", 1, "in", 1]]
In[3]: e2 = [["A", 1, "out", 2], ["U", 1, "in", 2]]
In[4]: e3 = [["U*", 1, "out", 1], ["A", 1, "in", 1]]
In[5]: e4 = [["U*", 1, "out", 2], ["A", 1, "in", 2]]
In[6]: e5 = [["U", 1, "out", 2], ["U*", 1, "in", 2]]
In[7]: g = [e1, e2, e3, e4, e5]
In [8]: gw = [g,1]
In [9]: visualizeTN (gw)
                                         - lin1:out1][in2:out2]-
```

_ [out1:in1][out2:in2]

```
\mathbb{E}[[\mathrm{id} \otimes \mathrm{Tr}](UAU^*)]:
ln[10]: k, n = symbols('k n')
In[11]: rm = ["U", [n,k], [n,k], n*k]
In[12]: Eg = integrateHaarUnitary(gw,rm)
In[13]: print(Eg)
In [14]: visualizeTN(Eg)
Out[1]: [[[[['@U*', 1, 'in', 1], ['@U', 1, 'out', 1]],
[['A', 1, 'out', 1], ['A', 1, 'in', 1]],
[['A', 1, 'out', 2], ['A', 1, 'in', 2]]], 1/n]]
```

This figure is followed by the new weight 1/n in the program.

1.5 Demo (had been done.)

To get RTNI, go to https://github.com/MotohisaFukuda/RTNI

To get a user-friendly but limited version, called RTNI_light, go to https://github.com/MotohisaFukuda/RTNI_light

To try a web version of RTNI_light, go to https://motohisafukuda.pythonanywhere.com

2 Random Gaussian states

"Typical entanglement for Gaussian states", arXiv:1903.04126 [quant-ph] with Koenig.

2.1 Motivation and past research

Typical entanglement entropy of random bipartite quantum states.

- Lubkin('78); Lloyd & Pagels('88); Page('93); Foong & Kanno('94): average of entanglement entropy.
- Hayden, Leung and Winter ('04): concentration of entanglement entropy.

- In the setting of random Gaussian states
 Serafini, Dahlsten, Gross & Plenio ('07):
 - micto-canonical measure and canonical measure.
 - inverse squared purity for subsystem of one mode is calculated.
 - Us:
 - direct access to symplectic eigenvalues
 - the number of modes of subsystem can grow as n^{κ} with $\kappa < 1$ with the total mode is n, in the regime $n \to \infty$.
 - Others:

2.2 Passive Gaussian unitary operations

The set of Gaussian unitary maps has one-to-one correspondence to the real symplectic group $\operatorname{Sp}(2n)=\{S\in M_{2n\times 2n}(\mathbb{R})\mid SJS^T=J\}$; a Gaussian unitary evolution of a Gaussian state means, for $S\in\operatorname{Sp}(2n)$

$$M \mapsto SMS^T$$

where M is the covariance matrix of the state.

Replacing the real symplectic group $\mathrm{Sp}(2n)$ by the orthogonal symplectic group $\mathrm{K}(2n)=\mathrm{Sp}(2n)\cap\mathrm{O}(2n)$, which is compact. The map

$$\mathsf{U}(n) \to \mathsf{K}(2n)$$

$$U \mapsto \begin{pmatrix} \mathsf{Re}(U) & \mathsf{Im}(U) \\ -\mathsf{Im}(U) & \mathsf{Re}(U) \end{pmatrix} \equiv \frac{1}{2} \begin{pmatrix} I_n & iI_n \\ iI_n & I_n \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & \overline{U} \end{pmatrix} \begin{pmatrix} I_n & -iI_n \\ -iI_n & I_n \end{pmatrix}$$

induces the measure on K(2n).

2.3 Partial trace as Gaussian operation

Suppose we have a Gaussian state of n-mode and want to get the covariance matrix of the reduced k-mode state (with redundant spaces).

For the covariance $(2n \times 2n)$ matrix M_n of the n-mode, calculate

$$M_k = \hat{\Pi}_{n,k} M_n \hat{\Pi}_{n,k}$$

with the projection

$$\hat{\Pi}_{n,k} = \begin{pmatrix} \Pi_{n,k} & 0_n \\ 0_n & \Pi_{n,k} \end{pmatrix},$$

where $\Pi_{n,k} = \operatorname{diag}(\underbrace{1,\ldots,1}_{k \text{ times}},\underbrace{0,\ldots,0}_{n-k \text{ times}})$ is a projection matrix of rank k.

2.4 Symplectic eigenvalues

A valid covariance matrix $(M+iJ\geq 0)$ has Williamson normal form: there is $S\in \operatorname{Sp}(2n)=\{S\in M_{2n\times 2n}(\mathbb{R})\mid SJS^T=J\}$ such that

$$SMS^T = diag(\lambda_1, \lambda_1, \lambda_2, \lambda_2, \dots, \lambda_n, \lambda_n)$$
.

where λ_j satisfy $\lambda_j \geq 1$ and are called the *symplectic eigenvalues* .

They can be obtained by computing the spectrum of the matrix ${\cal J}M$, which consists of complex conjugate pairs as follows:

$$\operatorname{spec}(JM) = \bigcup_{j=1}^{n} \{\pm i\lambda_j\} .$$

Note that
$$J = \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix}$$
.

2.5 Random Gaussian pure states

The covariance matrix M of a pure n-mode Gaussian state can be diagonalized by Euler/Bloch-Messiah decomposition;

$$M = S \begin{pmatrix} Z_n & 0 \\ 0 & Z_n^{-1} \end{pmatrix} S^T$$
 for some $S \in \mathsf{K}(2n)$.

Here, $Z_n = \operatorname{diag}(z_1, \ldots, z_n)$ with $z_i \geq 1$.

The induced measure on $\mathsf{K}(2n)$ generates random pure Gaussian states.

We call $\{z_j\}_{j=1}^n$ the *squeezing parameters*. Observe that such a state has energy:

$$\operatorname{Tr}\left[Z_n+Z_n^{-1}\right]=\sum_{j=1}^n E_j$$
 where $E_j=rac{1}{2}(z_j+1/z_j)$.

We can understand E_j as the energy in the j-th mode after a suitable Gaussian unitary rotation.

2.6 Symplectic eigenvalues of reduced states

Let ${\cal M}_k$ be the covariant matrix of k-mode, reduced from the random state of n mode. Then,

$$JM_k = \frac{1}{2} \begin{pmatrix} i\Pi & \Pi \\ -\Pi & -i\Pi \end{pmatrix} \begin{pmatrix} UAU^T & -iUBU^* \\ -i\bar{U}BU^T & -\bar{U}AU^* \end{pmatrix} \begin{pmatrix} \Pi & i\Pi \\ i\Pi & \Pi \end{pmatrix}$$

where $A = (Z_n - Z_n^{-1})/2$ and $B = (Z_n + Z_n^{-1})/2$.

Define

$$f(U) = \operatorname{Tr}\left[\left((JM_k)^2 + \lambda^2 I_{2k}\right)^2\right] = 2\sum^k \left(\lambda_j^2 - \lambda^2\right)^2.$$

Here, $\{\lambda_j\}_{j=1}^k$ are the symplectic eigenvalues of M_k and $\lambda=\mathrm{Tr}[B]/n$ is the averaged energy.

The calculation of $\mathbb{E}[f(U)]$ involves Weingarten calculus with \mathcal{S}_4 .

2.7 Concentration

Concentration of symplectic eigenvalues:

For fixed k, suppose the energy of the initial pure Gaussian state is universally bounded; $\sup_n \|Z_n\|_{\infty} < \infty$ (n^z with z < 1/8 is possible). Then

$$\Pr\{f(U) > \epsilon\} < \exp(-c\epsilon n)$$

for some universal constant c > 0.

Concentration of entanglement entropy:

In addition, if $\lambda = \lambda_n$ is bounded below by $\mu > 1$, then

$$\Pr\{|S(M_k) - S(\lambda I)| > \epsilon\} < \exp\left(-c\frac{\epsilon^4}{\beta(\mu)^4}n\right)$$

for some universal constant c>0; $S(\cdot)$ is von Neumann entropy, and

$$\beta(\mu) = \log \frac{\mu + 1}{\mu - 1} \ .$$

is called the inverse temperature.

Thank you very much.

Acknowledgement:

- I thank Hun Hee Lee and other conference organizer for running this conference and covering partially the travel fees.
- JSPS KAKENHI Grant Number JP16K00005 is acknowledged for the rest of travel fees and financial supports for the above two research projects.