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1. Separability, PPT, Bock-Positivity

In this talk, every state is assumed to be unnormalized.

A multi-partite state p € X)7_; My, is said to be (fully) separable if
it is the sum of pure product states.

A multi-partite state p € X)7_; My, is said to be entangled if it is
not separable.



For a given subset S © {1,2,--- , n}, the partial transpose T(S)
on Q)i_; My, is a linear map satisfying

at, iesS,

17

(11®2®- - -®a,) ) = h@b®---®b,, with b; = ,
aj, I¢85.

A multi-partite state o € ®7_, Mg, is called of PPT if 7(5) is
positive for every S < {1,2,---  n}.

It is obvious that every separable state is of PPT.



A self-adjoint matrix W is called block positive if (W, o) > 0 for
all separable states p.

Here, the bilinear pairing is given by

(W, ) = Tr (oW") Zvv,dg,d.

In other words, the cone of block positive matrices is the dual cone
of the cone of separable states.

Conversely, the cone of separable states is the dual cone of the
cone of block positive matrices by Hahn-Banach type separation
theorem.



Since the cone of states is self-dual, we have the inclusions:
the cone of separable states
c the cone of states
c the cone of block positive matrices.



2. X-states
A multi-qubit self-adjoint matrix W € X);_; Mg, (d; = 2) is said to
be X-shaped if it is of the form

500---00 Upo.--00
500---01 Upop---01

S01.-- uoi...
W= 0111 Uo1--11
U10--00  S10---00

uii-.-10 511---10
u11...11 S11.--11

We denote the above by W = X(s, u) briefly.




A multi-qubit state g € Q)_; Mg, (di = 2) is said to be an X-state
if it is X-shaped., that is, it is of the form

a00---00 Z00---00
400---01 Z00---01

ao1.--11  201---11
Z10---00  €10---00

Z11---10 a11---10
71111 ai1..-11

A self-adjoint matrix o = X(a, z) is a state if and only if

\/@ia = |z] for all i.

Each partial transpose fixes diagonal entries and permutes
anti-diagonal entries. An X-state o = X(a, z) is of PPT if and only

if \/aig = |z for all i,j.




Theorem (HHK19)

(i) The X-part of a multi-qubit separable state is again separable.

(ii) The X-part of a multi-qubit block positive matrix is again
block positive.

Theorem (HHK19)

(i) An X-state is separable if and only if (W, p) = 0 for all
X-shaped block positive W.

(ii) A self-adjoint X-shaped matrix is block positive if and only if
(W, 0y = 0 for all separable X-states p.



3. General Criterion

For an n-qubit X-shaped matrix X(s, u) with nonnegative
diagonals, we consider the following two numbers:

dn(s)
. -1
= |nf{soo...00r1r2 cesIp—1tn + Sp0...01M1 M- rn—1r, + -
—1 -1 -1 -1
+ So1--11f1r2 s rpqf, ~ + S10-00rp r2cccIp—1fp+ -
-1 _-1 -1 -1 -1 -1 -1
+ S11..107 M, qfn T S1111f M1l
> 0}
and
[ ullx,

-1
= sup{Upo..0001 Q2 * * * p—1Qp + UQQ...01 0L+ Ap_10r,~ + -+

-1 -1 -1 -1
+ Upr...11001Qp T, T, T+ U10-.000] Q20 Qp—1Q0p e

-1 -1 -1 -1 -1 |
+ U11...100 Oy ot 10 F UL 1100 QO 1O

n
caj e T}



Theorem (HHK19)

An n-qubit X-shaped self-adjoint matrix W = X(s, u) is
block-positive if and only if the inequality

dn(s) = [ulx,

holds.



For an n-qubit X-state o = X(a, z), we also introduce the two

numbers
Ap(a) = inf{{s,ay: dp(s) = 1},

|z]x, = sup{Cu, z) : |ulx, =1},
which can be considered as duals of d,(s) and |u|x,.
Theorem (HHK19)

An n-qubit X-state o = X(a, z) is separable if and only if the
inequality
An(a) = |z|x,

holds.



4. Computation to algebraic or analytic formulas

For a small n like 2,3, 4, we will use indices by natural numbers
rather than multi-indices as following:

a 7
ar z2
ag zg
X(a, b,z) = -
Zg bg
2> b2
z by
ay = apooo, 82 = o001 " » a8 = Aolll
bs = a1000, b2 = ai110," - , b1 = a1t
71 = 20000, 22 = 20001, " * » 28 = 20111

Zg = 21000, Z7 = Z1110," " , Z1 = Z1111-



I. Two qubit case

For a,b e R%r and z € C?, it is easy to check that

Ay (a, b) = min{y/a1b1,\/a2b2}  and Izl%, = [ z]co-

This is consistent with the fact that two qubit state is separable if
and only if it is of PPT.



Il. Three qubit case

Suppose that the X-part of a three qubit state ¢ is given by
X(a, b, z) with a, b€ RY and z € C*. In 2011, Giihne introduced

the following numbers:

L(o,u) :=Re (121 + upzo + u3z3 + Uszs) , ueC*
F(u) :==Re(uy) cos(a +  + ) — Im(uy) sin(a + B + )
+ Re(up) cos(a) — Im(up) sin(«)
+ Re(us) cos(B) — Im(us) sin(B)
+ Re(ug) cos(y) — Im(uy) sin(v),

C(u) := sup |F(u)|.
a,Byy



(Giihne, 2011)
Suppose that the X-part of a three qubit state o is given by
X(a, b, z). If o is separable, then the inequality

L(o,u) < C(u) A,
holds for every u e C* where the number A, is given by

AQ = min{\/albl, \/321)2, \/33[)3, \/34[)47 \4/31[)21)334, \4/b13233b4}.




Theorem (CHK17/HHK19)
For a three qubit X-state X(a, b, z), we have

A3(av b)
=min{\/a1b1,/a2b2,/a3bs, \/asbs, /a1b2b3as, /brazasba}.

and

e, = sup{ ") s ue )




Let
¢ = (91 + 94) - (92 + (93).

for z; = r;el?.

Theorem (HK17-2)
For z € C% with |z;| = r, we have

Iz, = rv/1+ [sin(¢/2)].



Theorem (CHK17)

For z; € C* with |z;| = |z;,| = r and |z;| = |z,| = s, we have

i

Iz, r2t3 + 2rsto| sin(¢/2)| + s2
Z =
% 2 +1

r? —s2 +4/(r2 — s2)2 + (2rssin(¢/2))?
2rs|sin(¢/2)| '

where ty =



01 02 03 04 05 06 07 08 09 190
r

Two thick curves, circle and rectangle, represent the boundary of
the separability region (r,s) of the state
X((1,1,1,1),(1,1,1,1), (e’r, 1,5, 5))

for @ = w and 6 = 0, respectively. The other curves represent the
separability regions for 6 = 7/2, w/4, 7/10.



Theorem (CHK17)
For z € C*, we have

V2myimy
A/ m3 4+ m3

Zj, | +|Zzi. Zi, | +1Z;
for my = 2y [+1z5] '1|2‘ p| and my = 12ig | +12i | '3‘2| '4‘.

I+ [sin(6/2)]

Izl1x, =



I1l. GHZ diagonal case

A multi-qubit X-state X(a, z) is GHZ diagonal if and only if a; = a;
and z € R.

Theorem (HK17-1/HHK19)

n
For a€ R%', we have

Ap(a) = min a;.
]



For a three qubit GHZ diagonal state X(a, a, z), we define the real
numbers

)\5 =2tz 4+ mtzmtz), t=z(—2+2+2+22) - 2nz3,
=20—z1—m+zm+z), th=z(+z -2+ 23 +22) — 221232,
=20—zn+zm—z3+2z), t3=2z3(+2 +25 — 25+ 22) — 2z120,
=2(—z1+ 2+ 23— z3), = z(+28 + 23 + 725 — 23) — 221 7023.

and the condition

(*) titade A7 <0 and trtzAsAg > 0.



Theorem (HK17-1)
For z € R*, we have the following:
(i) if AsAeA7Ag < 0, then Hz\|§(3 = |z]oo;
(ii) if AsAeA7Ag > 0 and the condition (*) does not hold, then
Izl%, = 2]

(i) if \sAeA7Ag > 0 and the condlition (x) holds, then

Izl = A/ (AsA6 + A7) (AsA7 + AeAg) (AsAg + AgA7)
Xs 8v s Ao 7 g




IV. Four qubit case

For 1 =00,2 =01,3 = 10,4 = 11, we observe that
(0,0) +(1,1) = (0,1) + (1,0).

We denote this relation by

1+4=2+3.



The quantity
A3(av b)
=min{v/a1b1,\/a2ba,\/a3bs, \/asbs, v/ a1b2bsas, A/ brazazba}.

matches to

1=1,2=2,3=3,4=4,1+4=2+3.
The quantity
¢ = (01 + 04) — (02 + 63).

matches to
1+4=2+3.



For 1 =000,2 = 001,3 = 010,4 = 011,5=100,6 = 101,7 =
110,8 = 111, all nontrivial relations are

1=1,2=2,3=3,4=4,5=5,6=6,7=7, 8=38

and
1+48=24+7=3+6=4+5,
1+4=2+3, 54+8=6+7,
1+6=2+5, 34+8=4+17,
1+7=3+5, 2+8=4+6.
and

1+414+48=2+3+5, 24+2+7=1+4+6,
343+6=1+4+7, 44+44+5=2+3+38,
44+54+5=1+6+7, 3+6+6=2+5+38,
24+ 7+7=3+5+38, 1+8+8=4+6+7.



Theorem (H)

For a,b e Ri, we have

Au(a, b) :min{ aib : 1<i<8}
v { y ailaizbjlbjg tip i =1 —|—j2}
U {/ai a3, by, by by, i +i2 i3 =J1 + G2 + 3}

For example, 1 +1+8=2+3+5

((0,0,0) + (070) 0) + (]-a ]-a 1) = (070) 1) + (Oa 1,0) + (170) 0))
yields {/a2agbabsbs and ¢/ b2bgarazas.

The set which we take a minimum contains 8 + 24 + 16 = 48
algebraic elements.



We define

@1 :=01+ 04 — Oy — O3, ¢ = b5 + Og — O — 07,
¢33:91+98_94_957 ¢43:02+97_03_96'

These match to

1+4=2+3, 5+8=6+7, 1+8=4+5 24+7=3+6.



Let z € C* with z = r;e'% and ¢ = (01 + 04) — (62 + 63).

We have
HCH$(3 = H(Cl7 C1, &2, 2, C3, C3, G4, C4>H;(4.

with
¢1=¢2=0, ¢3 = s = 0.
We also have
lelx, = I(c1, 2, c3,ca, €1, €2, €3, ca) [, -

with

o1 = g2 = 0, ¢3 = ¢4 =0.



Theorem (H)
For z € C® with |z;| = r, we have the following:
(I) if g3 = g = 0, then

I2l1x,

=r (max{| cos(¢1/4)|, | cos(¢2/4)|} + max{|sin(¢1/4)], | sin(¢2/4)]})
(ii) if 1 = ¢o =0, then
2l1x,

=r (max{| cos(¢3/4)|, | cos(¢a/4)[} + max{[sin(¢3/4)], |sin(¢a/4)[})

This recovers the three qubit result

r(lcos(¢/4)] + [sin(¢/4)]) = ri/1 + [sin(¢/2)].



Theorem (H)
For z € C® with |zj| = r and ¢1 = ¢o = ¢p3 = ¢4 = &, we have

|zlx, = r(1+ [sin(¢/2)]).



Theorem (H)
Suppose that z € C® and |z;| = r;. Then,
(i) we have
Iz]x,

max{| cos(¢1/4)|,| cos(d2/4)|} + max{|sin(¢1/4)], | sin(¢2/4)[}
max{| cos(¢3/4)|, | cos(¢a/4)[} + max{|sin(¢3/4)], [ sin(¢a/4)}

= min{my, m2}

formi = (n+rn+r3+rm)/4and my = (rs +re +r7 +r5)/4;
(i) we have
|2,

max{| cos(¢3/4)|,| cos(pa/4)|} + max{|sin(¢s/4)|, |sin(¢a/4)[}
max{| cos(¢1/4)|,| cos(¢2/4)[} + max{|sin(¢1/4)], | sin(¢2/4)}

= min{ms, ms}

forms = (rn+r+nr+rg)/4and mg=(r+r+re+r7)/b



IV. n-qubit case

By the nontrivial relations

i1+ib+- - Fip=j1+j+--

we can define A,(a) for ae R%".

What is the formal definition of nontrivial?

+Jm



For 1 +4 =2 + 3, we observe that

{000, 011,001,010} = {000,011,110,101}
and
{000,011, 110, 101}
{000,011, 110,001}
{000, 011,110,001}



A multiset is a collection which allows repetition of elements,
unlike a set.

A multiset T of length n indices of 0,1 will be said to be balanced
if the number of indices i in T with i(k) = 0 coincides with the
number of indices i € T with i(k) =1 for every k =1,2,...,n.

We say that a balanced multiset is irreducible when it cannot be
partitioned into balanced multisets.

It is easily seen that the cardinality of a balanced multiset must be
even and the set G, of all irreducible balanced multisets of length n
indices of 0,1 is finite.



For a € R?", we define

1/#(T)
A,,(a) ‘= min { <1_[ a;> T e gn}
ieT

Theorem (HHK19)

n
For a € R?", we have



5. Function systems and order unit norms

A unital subspace of C(K) had been abstractly characterized by
Kadison. It is called a function system.



Let V be an ordered vector space with a distinguished element /.
1. We call / € V an order unit for V provided that for every
x € V, there exists a positive real r such that r/ + xe€ V7.
2. We call | Archimedean if e/ + x € VT for all € > 0 implies
that xe VT,

3. Vs called a function system if it has an Archimedean order
unit.



A function system V has a canonical norm
Ix|| :==inf{r >0:—rl < x<rl},

which is called an order unit norm of V.



(Kadison,1951)
Let V be a function system. There exists a unital order embedding

oV — C(K)
for a compact Hausdorff space K.

This embedding is isometric with respect to the order unit norm.



Functions systems and compact convex sets are dual to each other.

For a function system V/, the state space S(V/) is a compact
convex set.

For a compact convex set K, the space Aff(K) of affine functions
on K is a function system.
Moreover, we have

AE(S(V))~V  and  S(Afi(K)) ~ K.



For function systems V and W, we define

VI@W*':={) a®bc V®W :neN,ae V' beWh}
i=1

and

(V@max W)t i= {ze VOW : Ve > 0,z+ely®@1y € VIQWT)

The maximal tensor product
V@max W = (V® Wa (v®max W)+, 1V @ 1W)

is a function system.



For function systems V and W, we define

(V@min W)* = {z€ VOW : (fRg)(z) = 0,f € S(V),g € S(W)}

The minimal tensor product
V@min W = (V® W, (V®min W)+a ]-V ® 1W)

is a function system.



(M, ®max M,)T coincides with the cone of separable states.
(We do not need € > 0 by the Carathéodory theorem.)

(M ®min M)t coincides with the cone of block positive matrices.



2 ||u|x, coincides with the order unit norm of self-adjoint
anti-diagonal matrix X(0, v) in ®7. M.

HzH;(n coincides with the order unit norm of self-adjoint
anti-diagonal matrix X(0, z) in ®7,, M>.



Let s;,a; > 0 and 0,(s) = 2", Ap(a) = 1.

Two order units / and X(s,0) determine the same order unit norm
on the self-adjoint anti-diagonal matrices X(0, u) in ®/. M>.

Two order units / and X(a,0) determine the same order unit norm
on the self-adjoint anti-diagonal matrices X(0, z) in ®f,, M>.
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