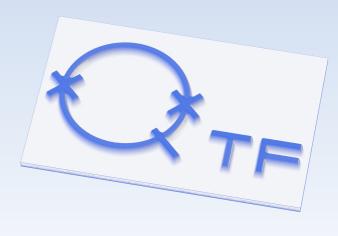
Noise-disturbance relation and the Galois connection of quantum measurements

Turku Quantum Technology

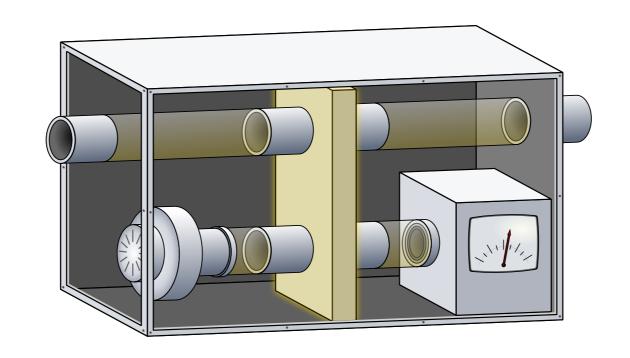
Teiko Heinosaari

University of Turku Finland



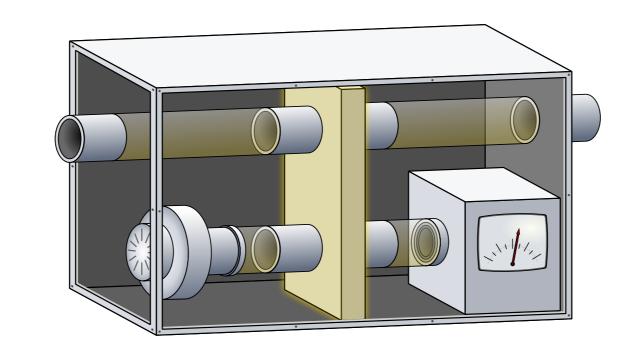
Quantum Technology Finland

noise-disturbance tradeoff



 $noise \cdot disturbance \geq 1$

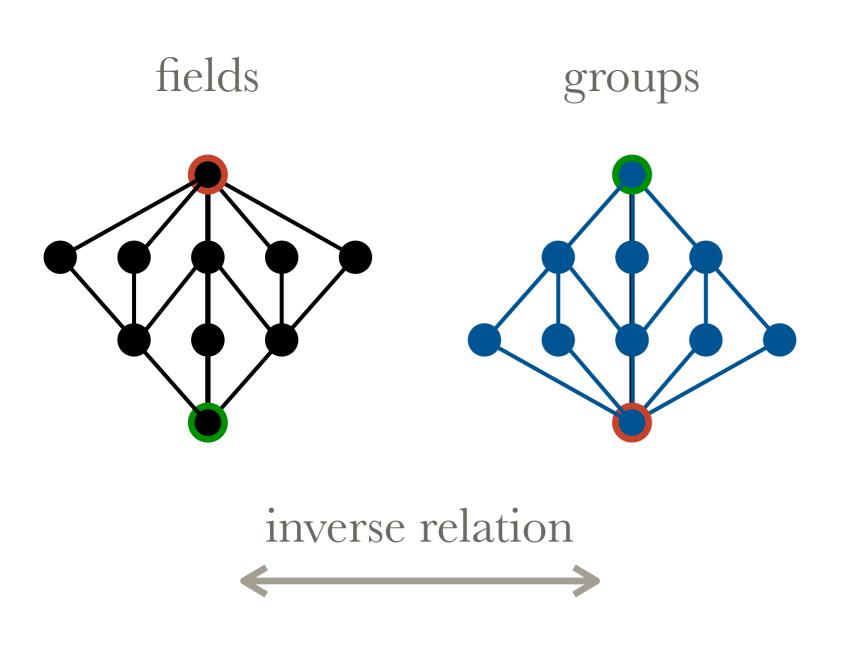
noise-disturbance tradeoff



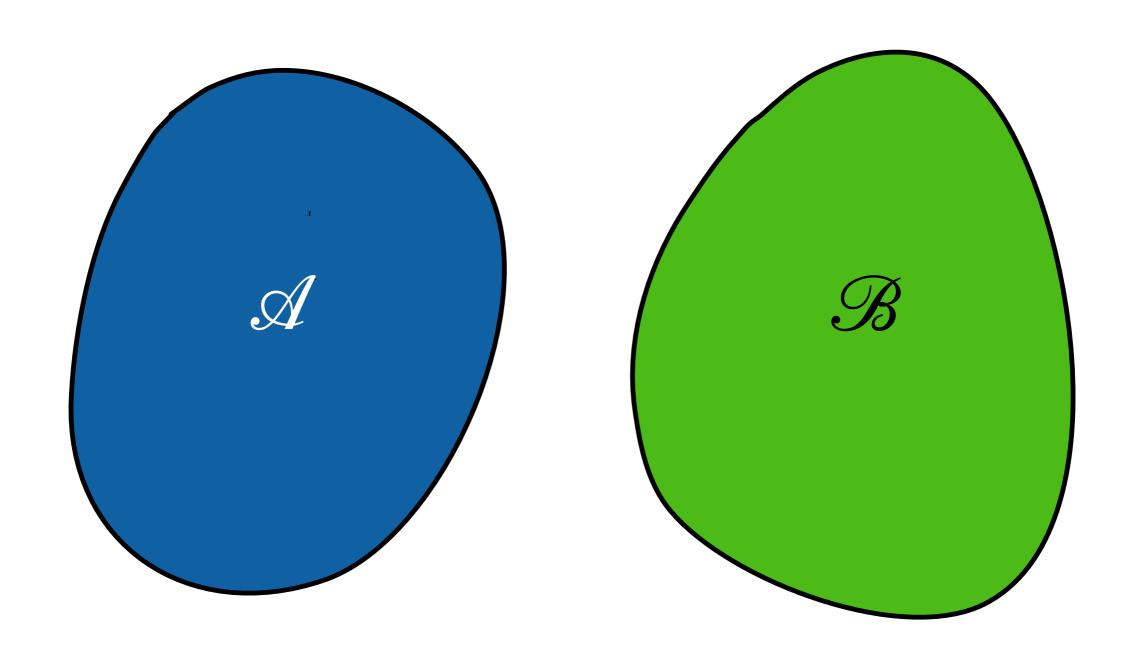
 $noise \cdot disturbance \geq 1$

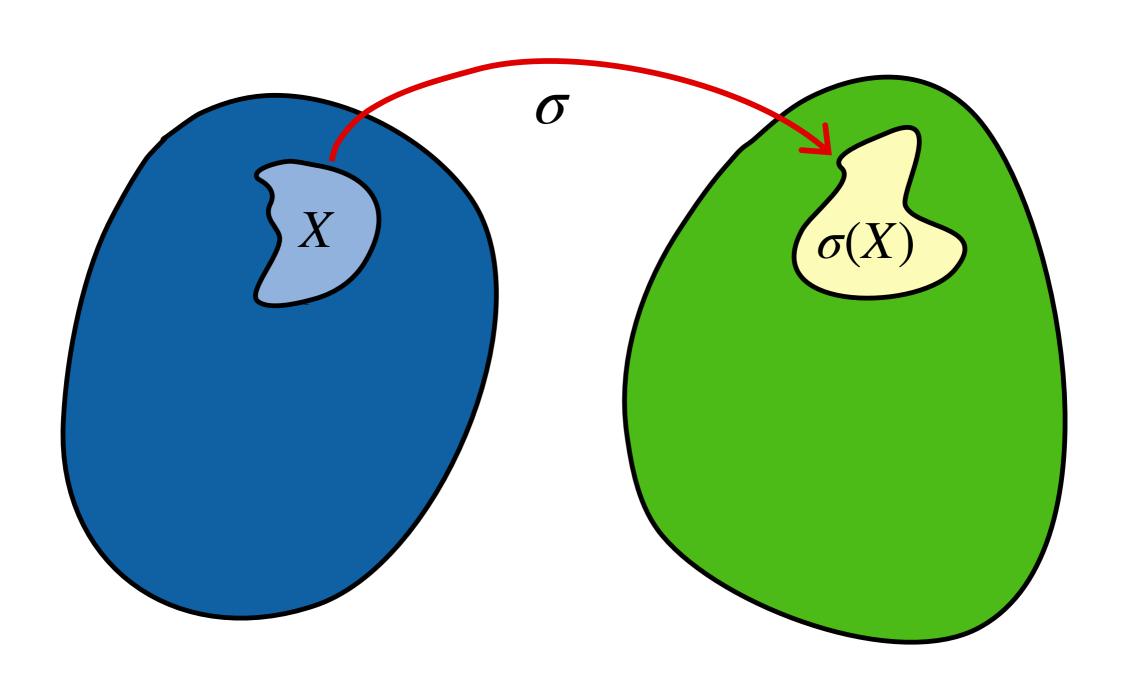
structural relation?

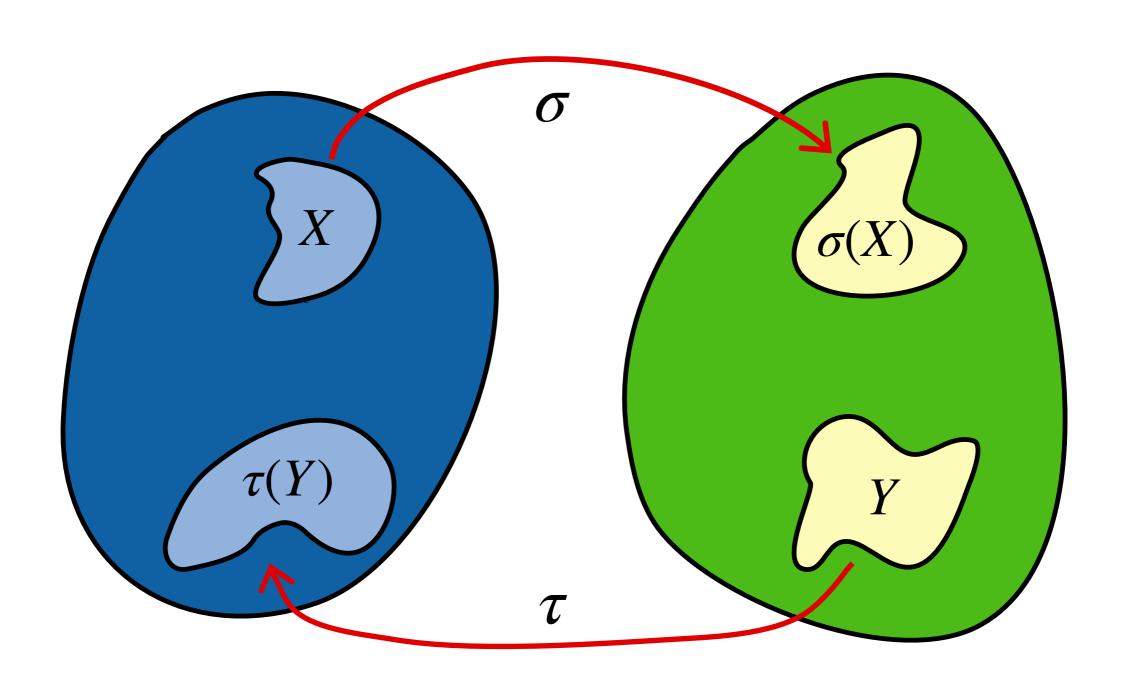
Galois theory

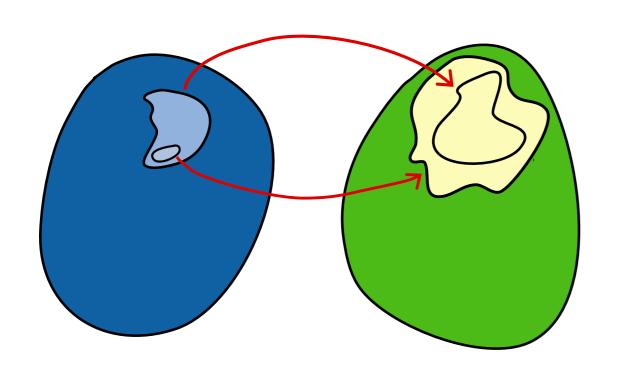


Évariste Galois 1811-1832





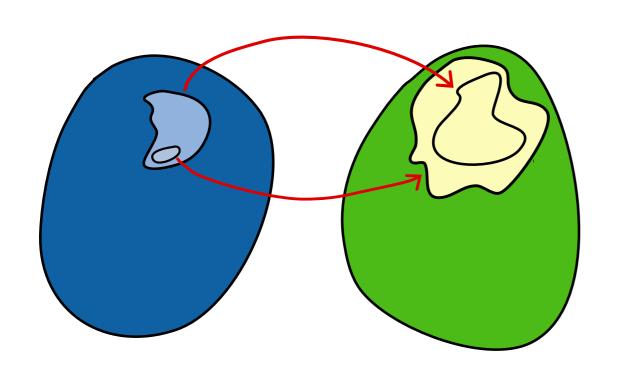




* Condition 1

$$X' \subseteq X \Rightarrow \sigma(X') \supseteq \sigma(X)$$

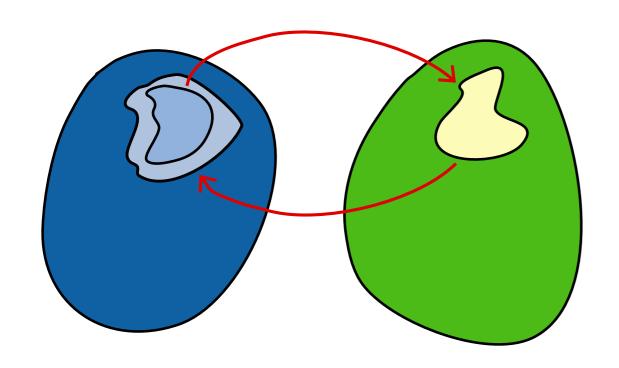
$$Y' \subseteq Y \Rightarrow \tau(Y') \supseteq \tau(Y)$$



Condition 1

$$X' \subseteq X \Rightarrow \sigma(X') \supseteq \sigma(X)$$

$$Y' \subseteq Y \Rightarrow \tau(Y') \supseteq \tau(Y)$$



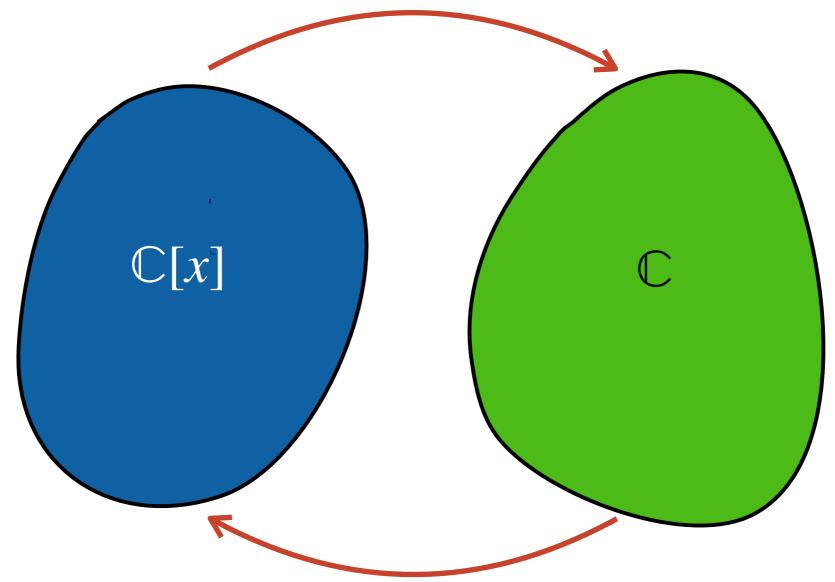
Condition 2

$$X \subseteq \tau(\sigma(X))$$

$$Y \subseteq \sigma(\tau(Y))$$

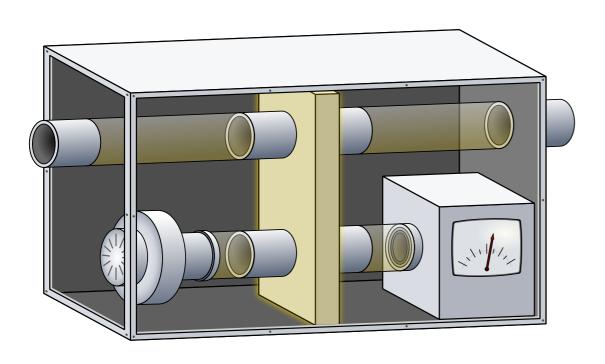
Example

$$\sigma(X) = \{ c \in \mathbb{C} : f(c) = 0 \ \forall f \in X \}$$

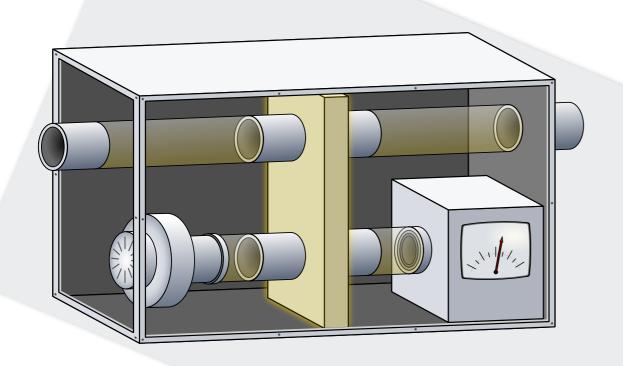


$$\tau(Y) = \{ f \in \mathbb{C}[x] : f(c) = 0 \ \forall c \in Y \}$$

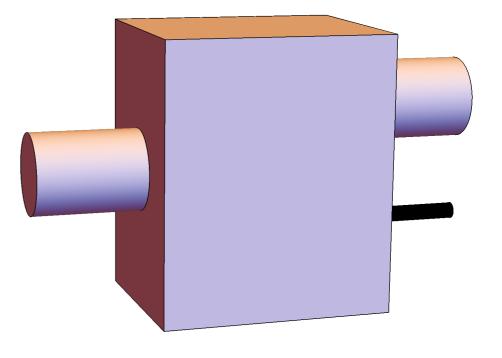
quantum measurements



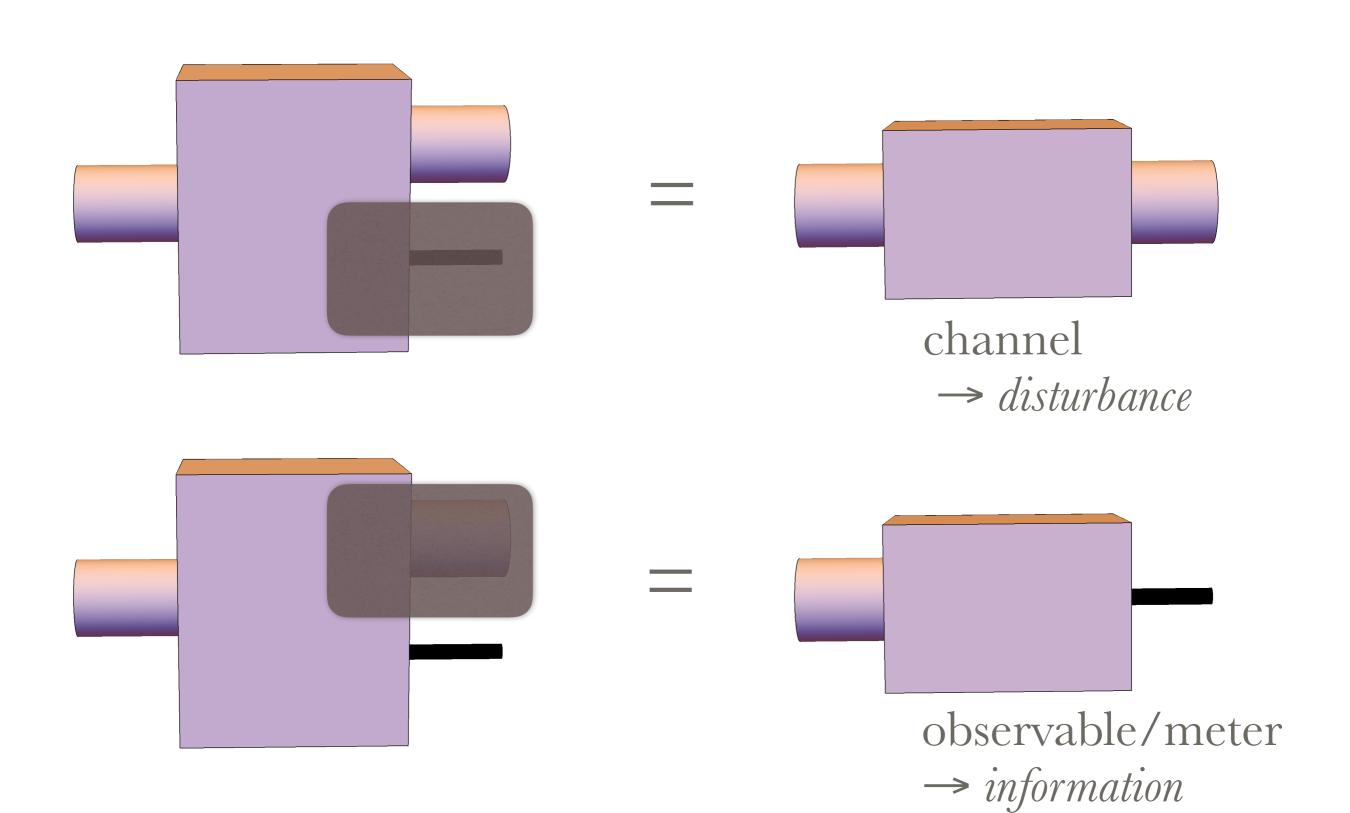
quantum measurements

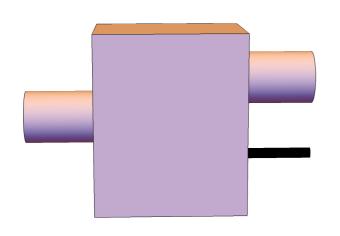


quantum instrument



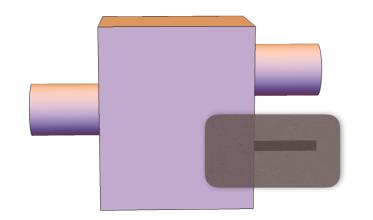
channels and observables



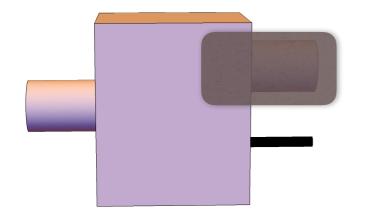


$$I(x, \varrho) = \sum_{y \in \ell_x} K_y \varrho K_y^*$$

$$K_{y}: \mathcal{H}_{in} \to \mathcal{H}_{out}$$

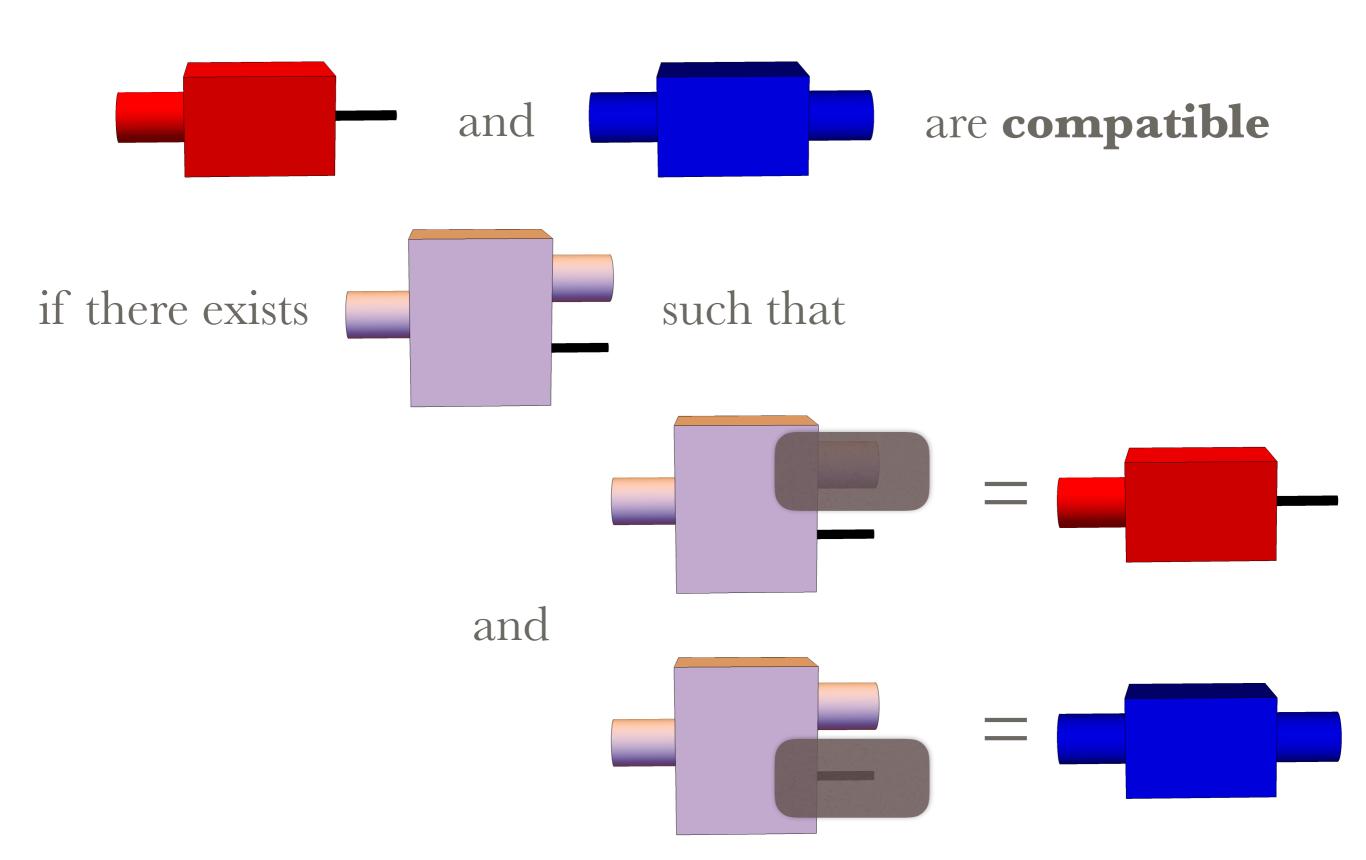


$$\Lambda(\varrho) = \sum_{y} K_{y} \varrho K_{y}^{*} \quad \text{CPTP map}$$



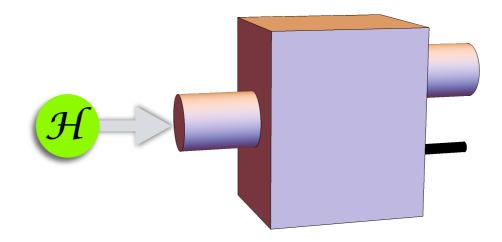
$$A(x) = \sum_{y \in \ell_x} K_y^* K_y \qquad \text{POVM}$$

compatibility relation



compatibility relation

notation

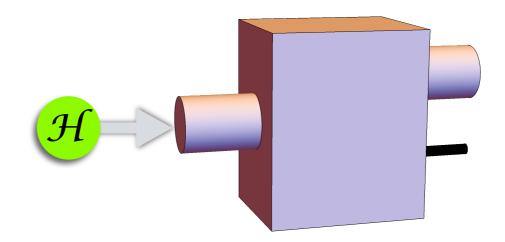


 $\mathcal{O}=$ observables with input system \mathcal{H} , arbitrary output

 $\mathcal{C}=$ channels with input system \mathcal{H} , arbitrary output

compatibility relation

notation



 $\mathcal{O}=$ observables with input system \mathcal{H} , arbitrary output

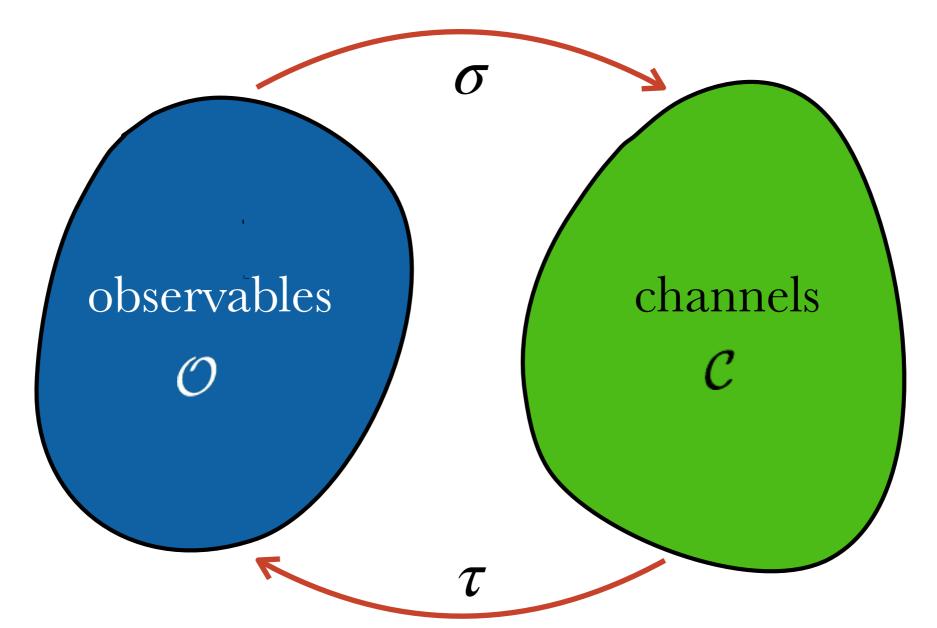
 $\mathcal{C}=$ channels with input system $\mathcal{H},$ arbitrary output

 $\sigma(A) = \{ \Lambda \in \mathcal{C} \mid \Lambda \text{ is compatible with } A \}$

 $\tau(\Lambda) = \{ A \in \mathcal{O} \mid A \text{ is compatible with } \Lambda \}$

$$\sigma(X) = \bigcap_{A \in X} \sigma(A) \qquad \qquad \tau(Y) = \bigcap_{\Lambda \in Y} \tau(\Lambda)$$

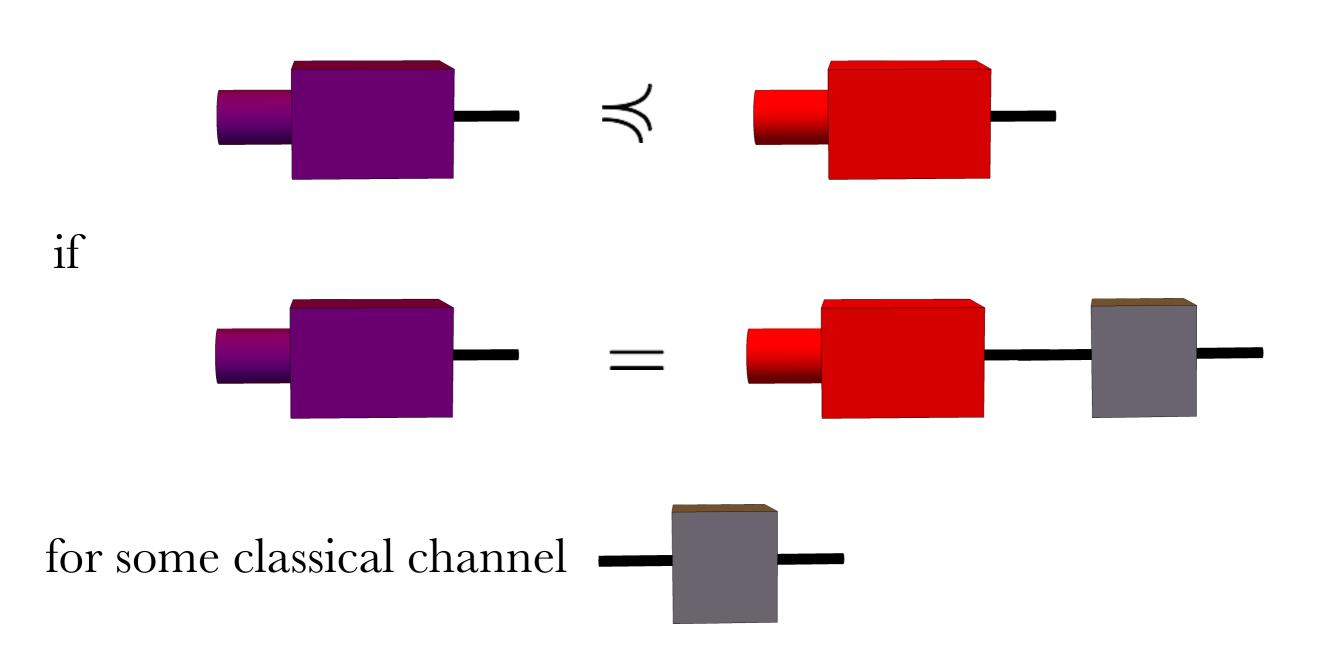
 $\sigma(A) = \{\Lambda \in \mathcal{C} \mid \Lambda \text{ is compatible with } A\} \quad \tau(\Lambda) = \{A \in \mathcal{O} \mid A \text{ is compatible with } \Lambda\}$



What about noise and disturbance?

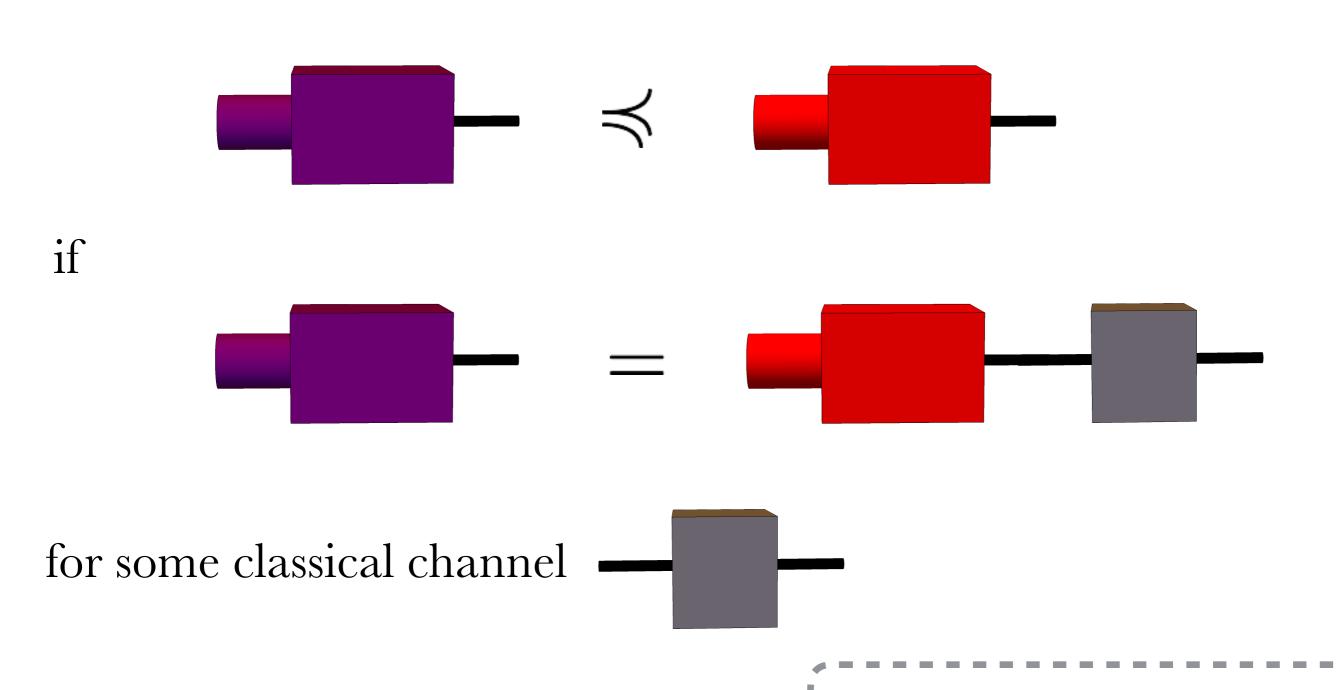
noise preorder

transitive and reflexive relation on the set of observables



noise preorder

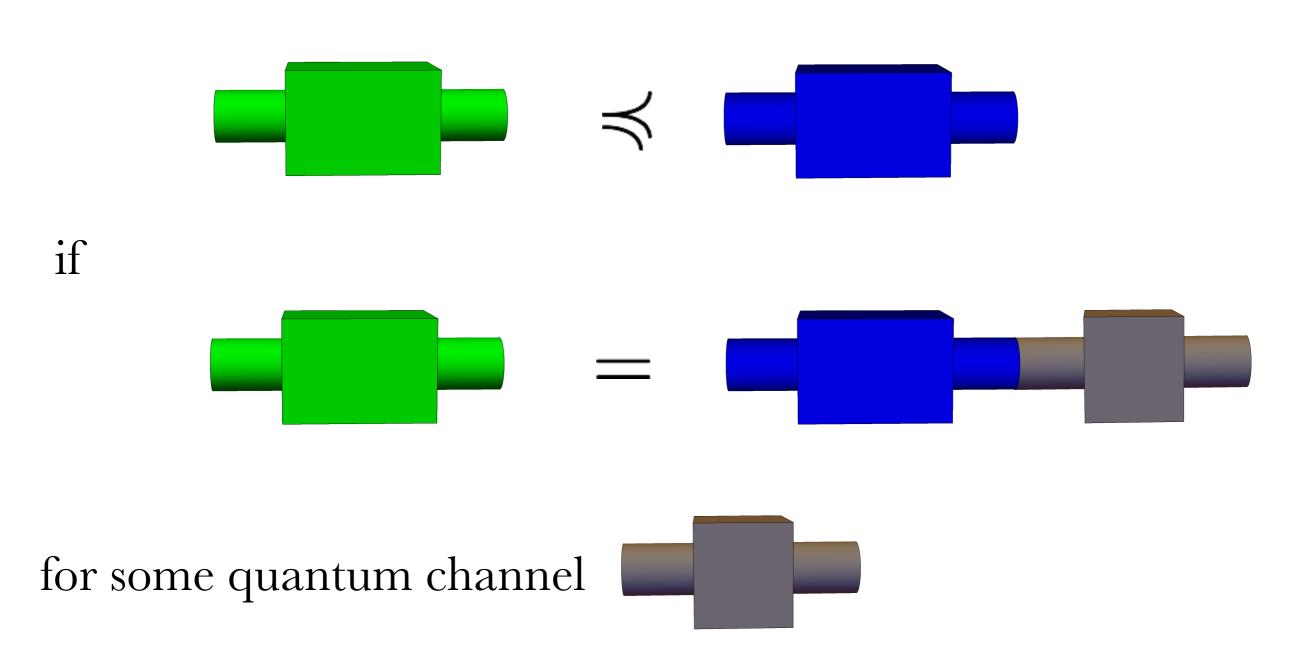
transitive and reflexive relation on the set of observables



 $\downarrow A = \{B \in O : B \leq A\}$

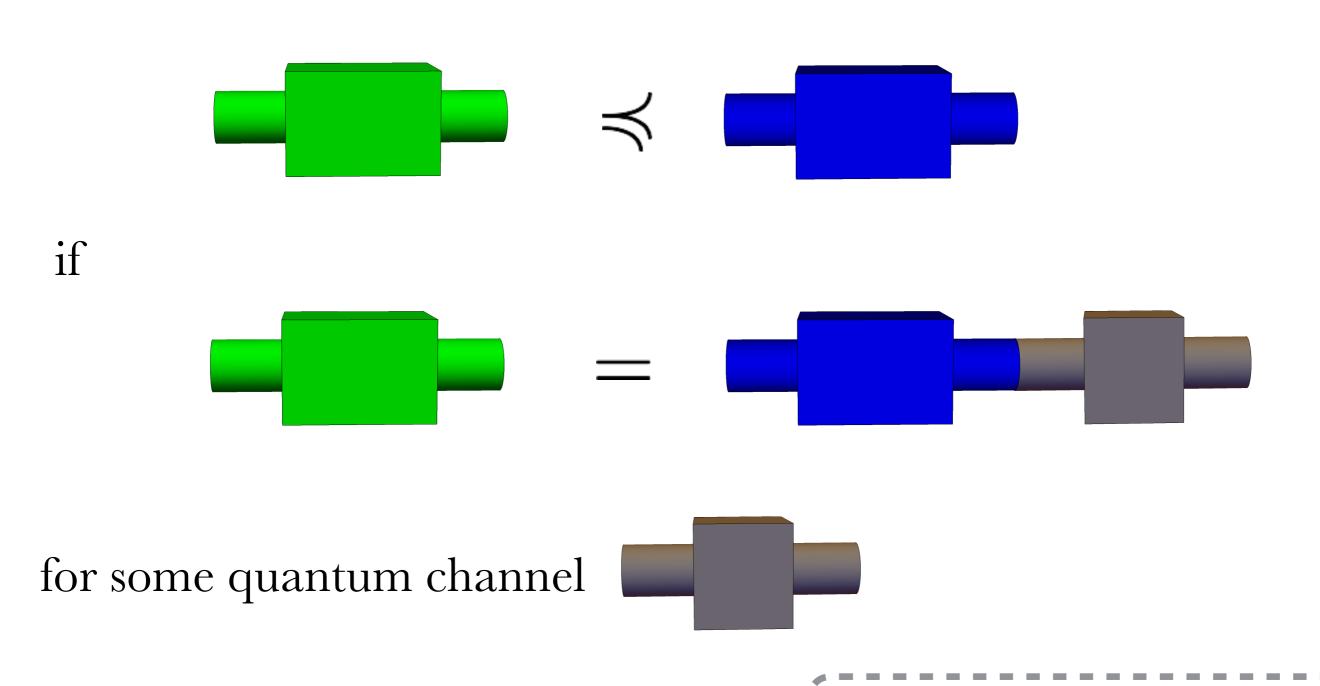
disturbance preorder

transitive and reflexive relation on the set of channels

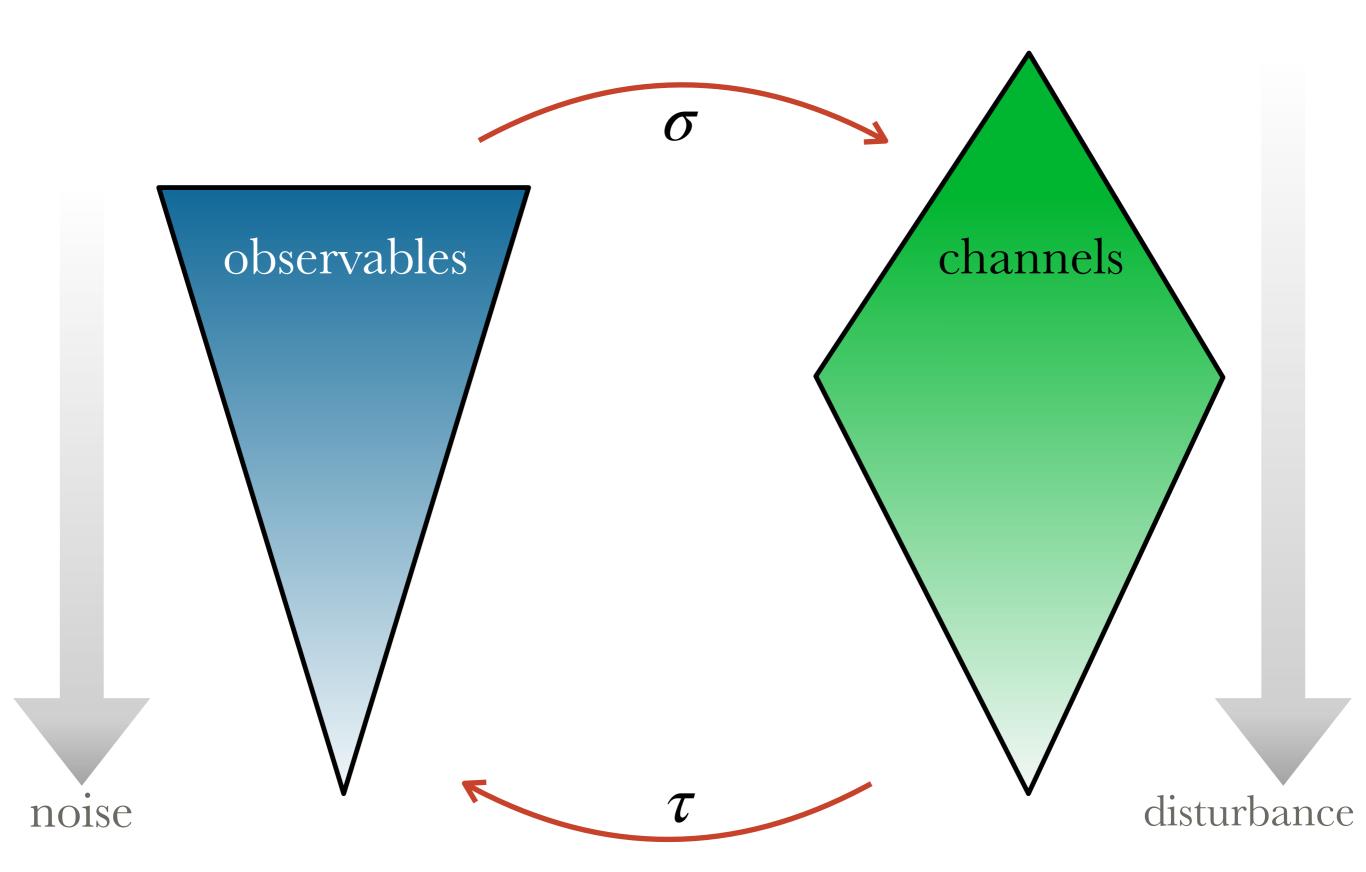


disturbance preorder

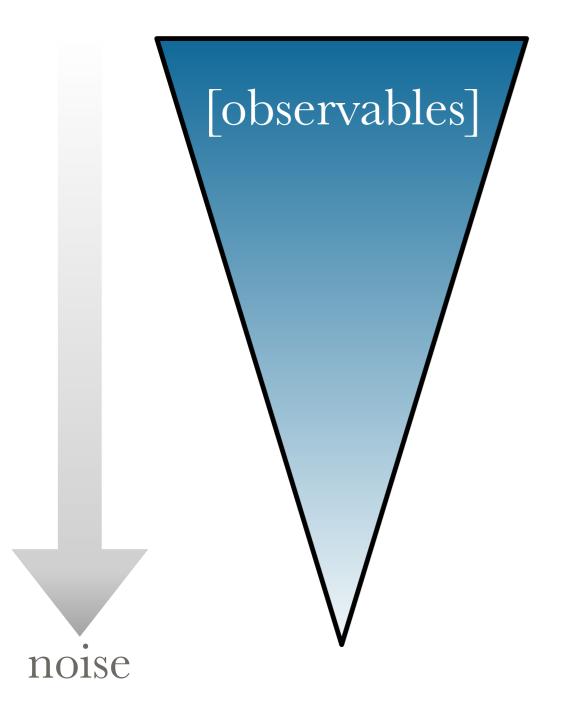
transitive and reflexive relation on the set of channels

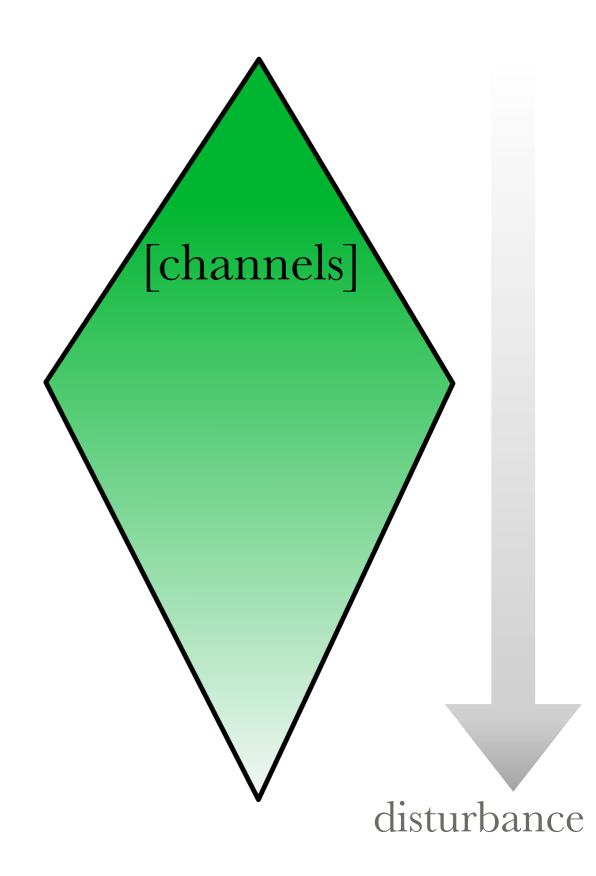


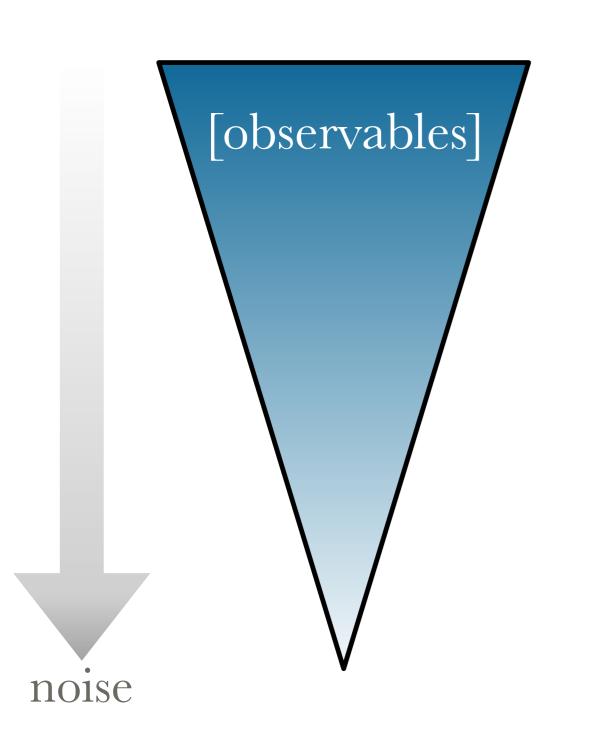
 $\downarrow \Lambda = \{ \Gamma \in C : \Gamma \leq \Lambda \}$



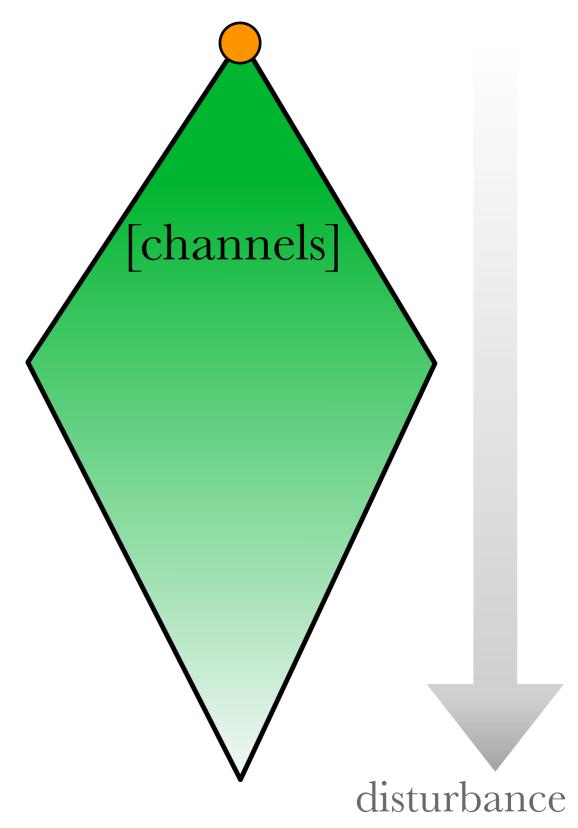
$$[A] = \{B \in O : A \leq B \leq A\}$$

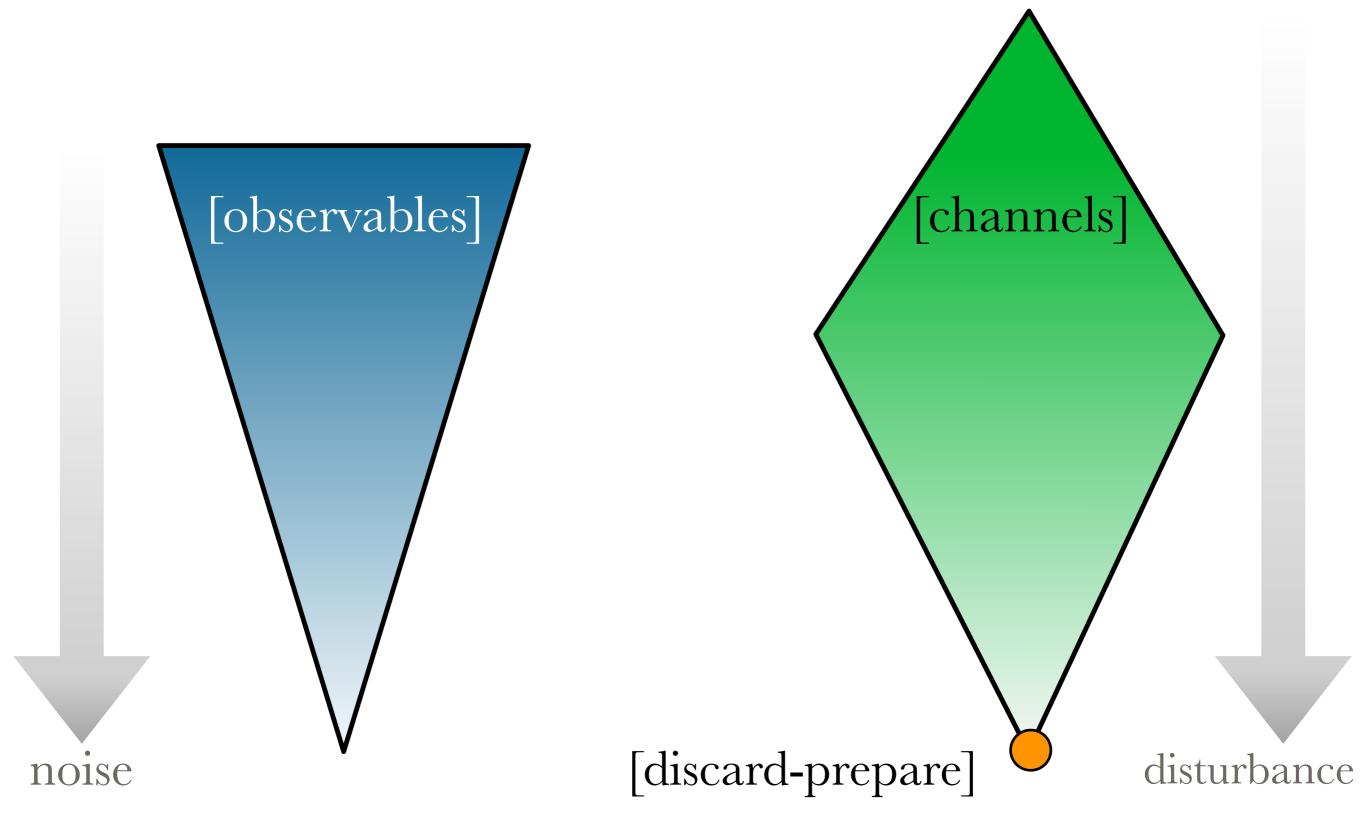


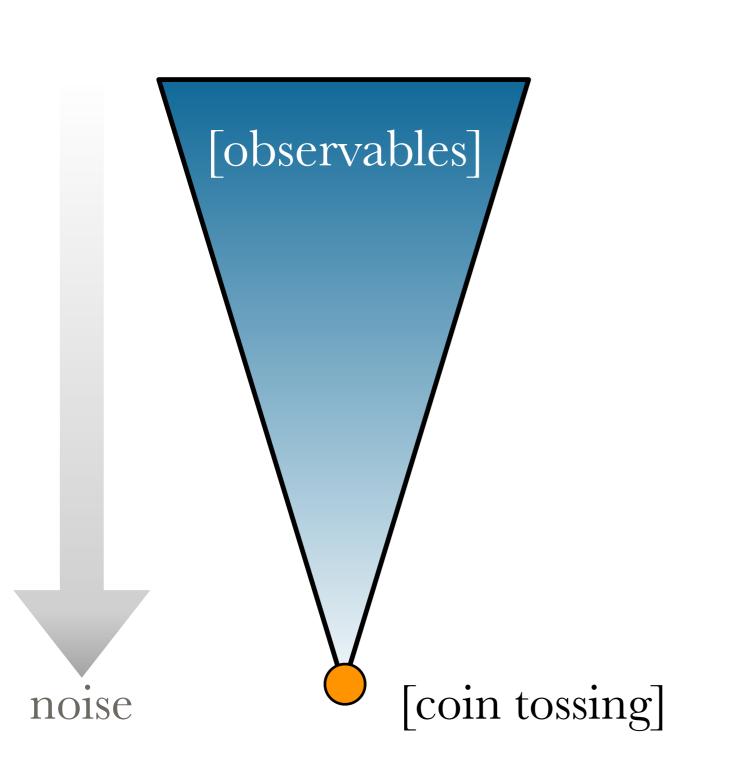


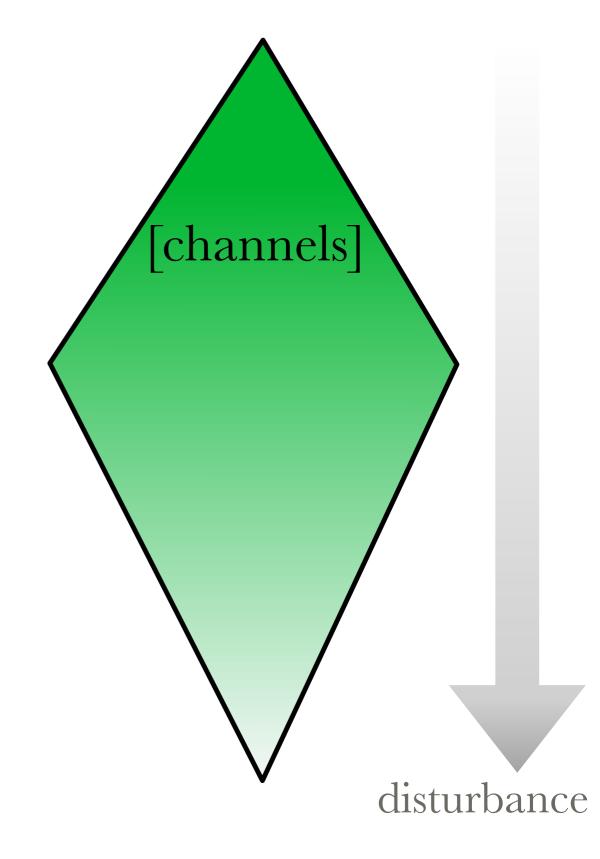


[identity]

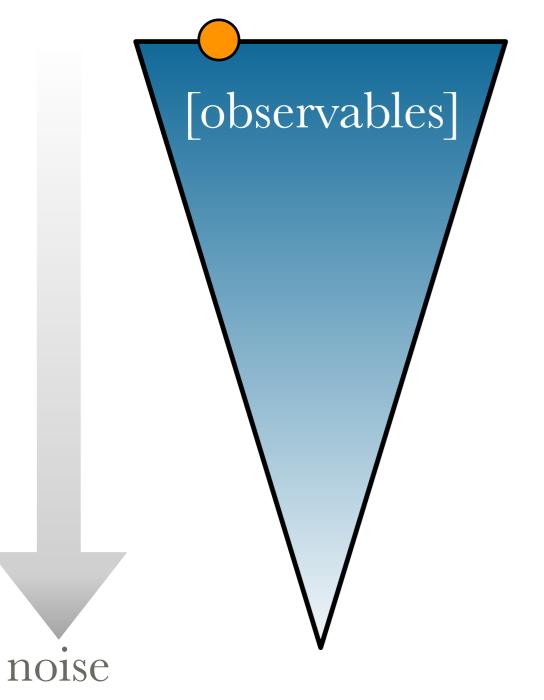


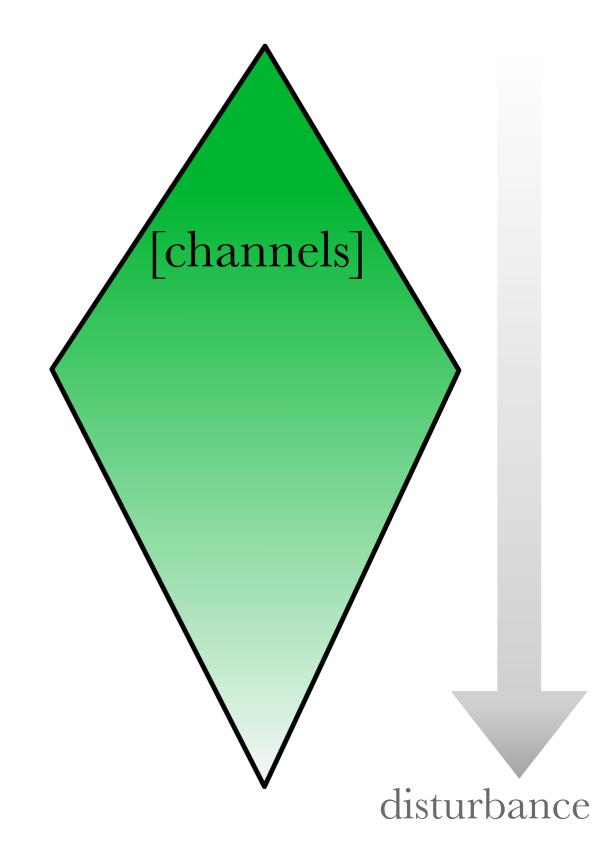




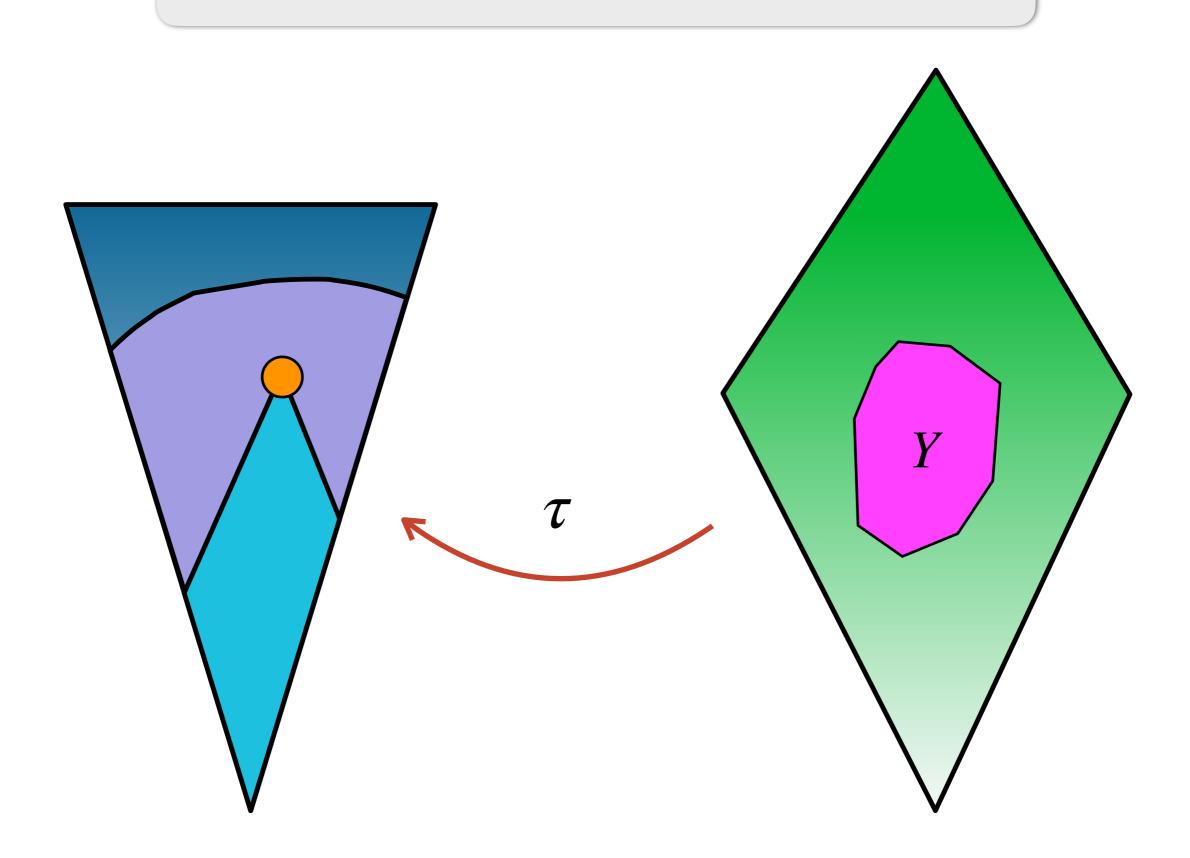


[rank-1 POVM]





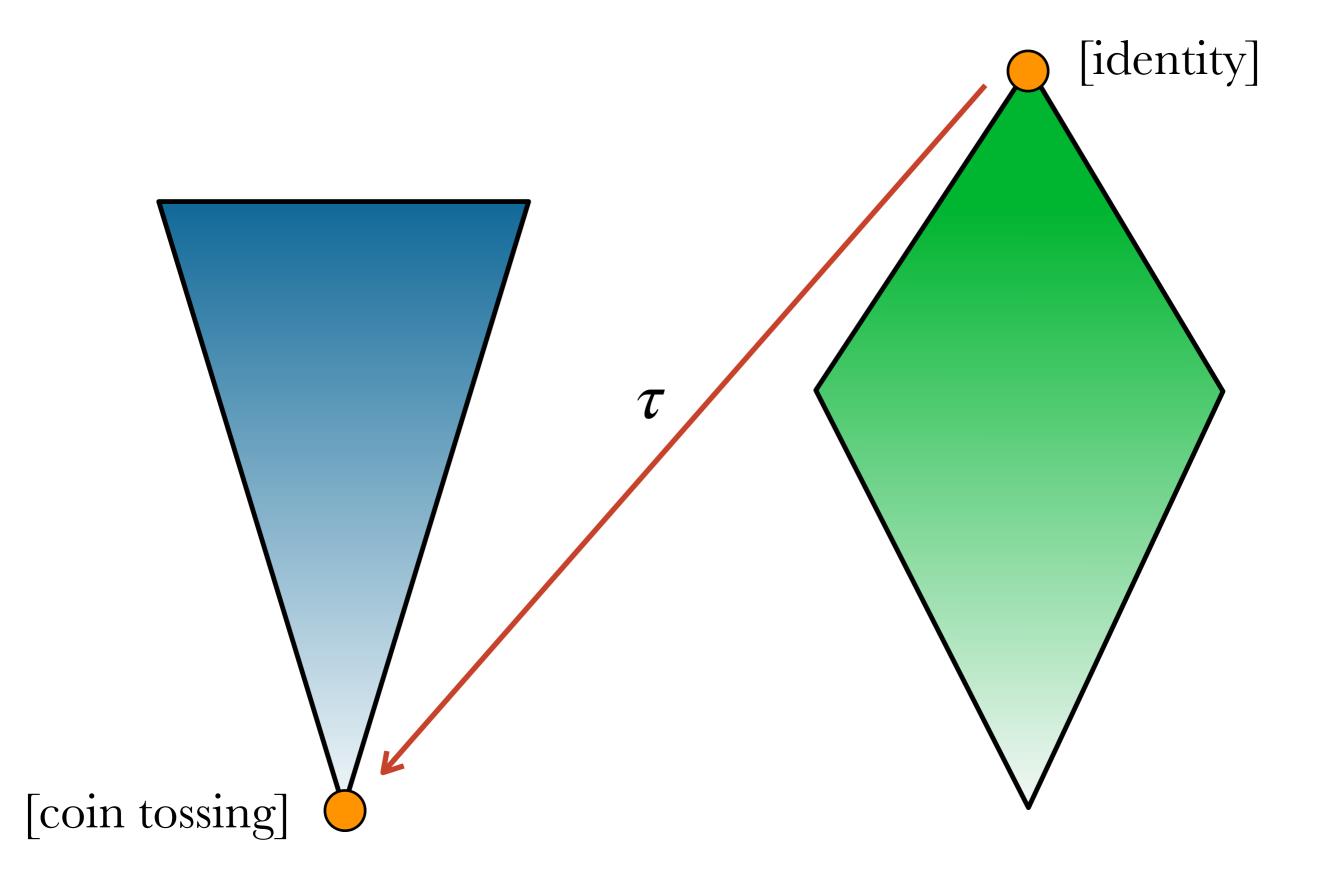
$$A \in \tau(Y) \implies \downarrow A \subseteq \tau(Y)$$

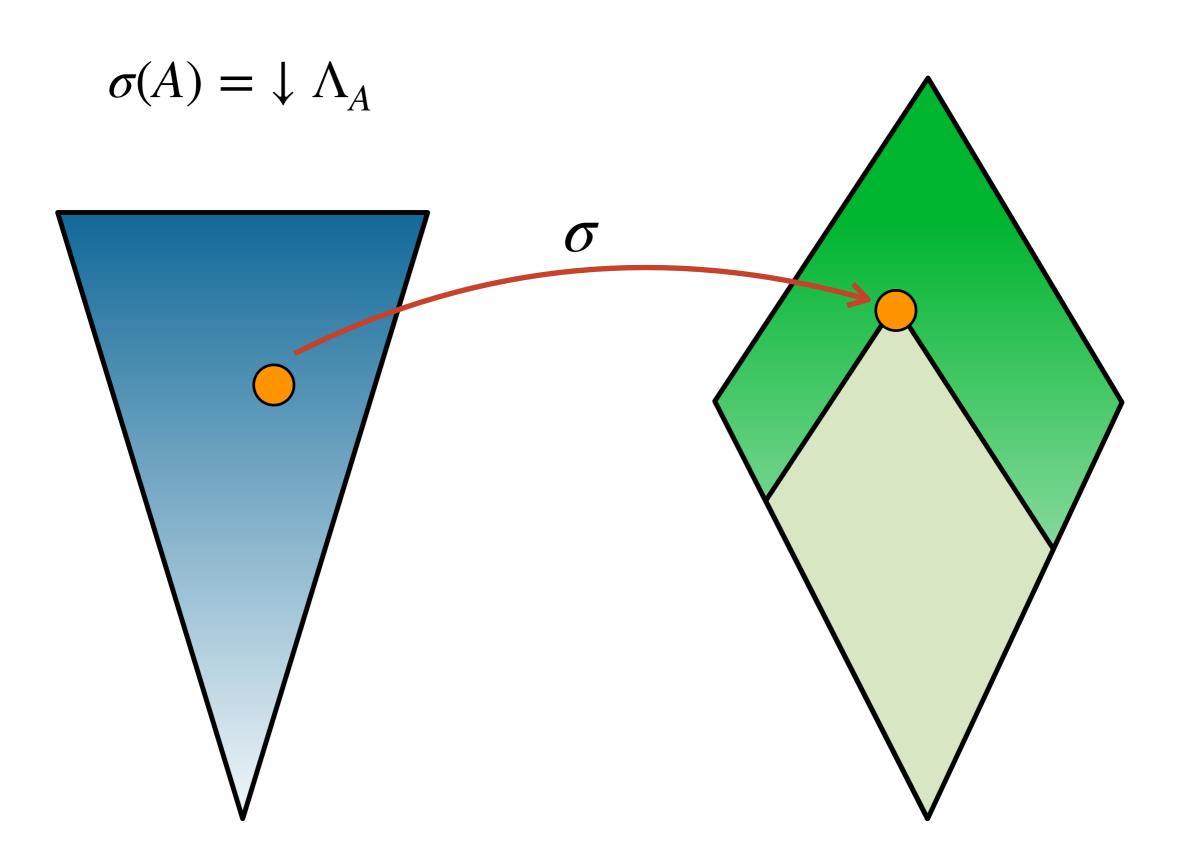


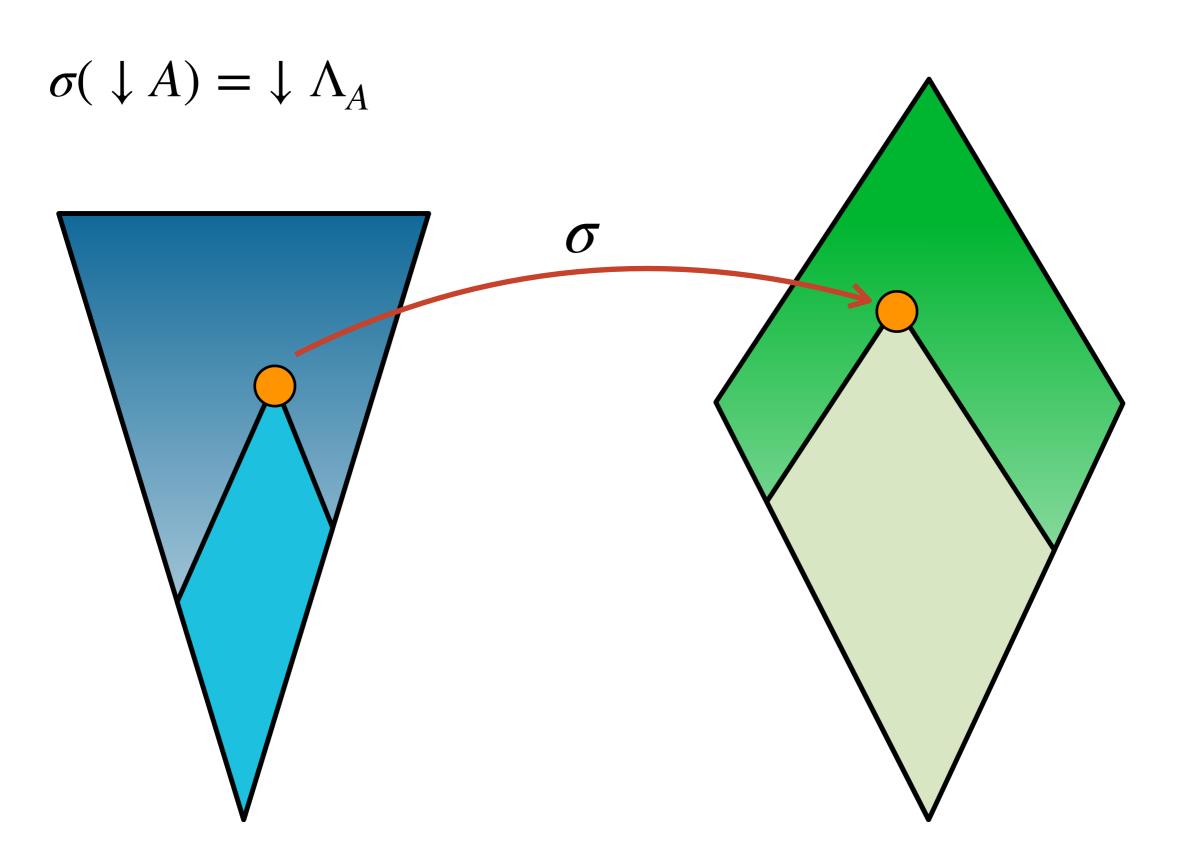
$$A \in \tau(Y) \implies \downarrow A \subseteq \tau(Y)$$

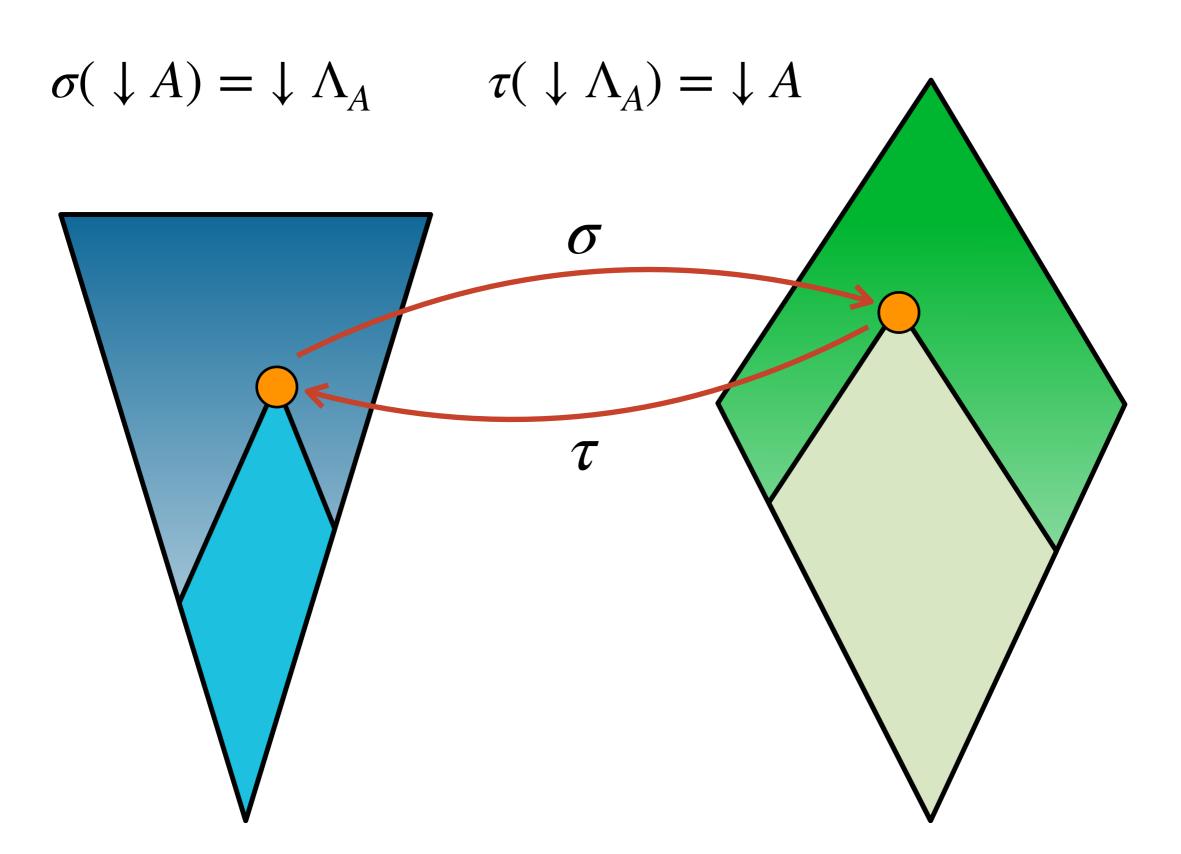
$$\Lambda \in \sigma(X) \implies \downarrow \Lambda \subseteq \sigma(X)$$

A) no-information-without-disturbance









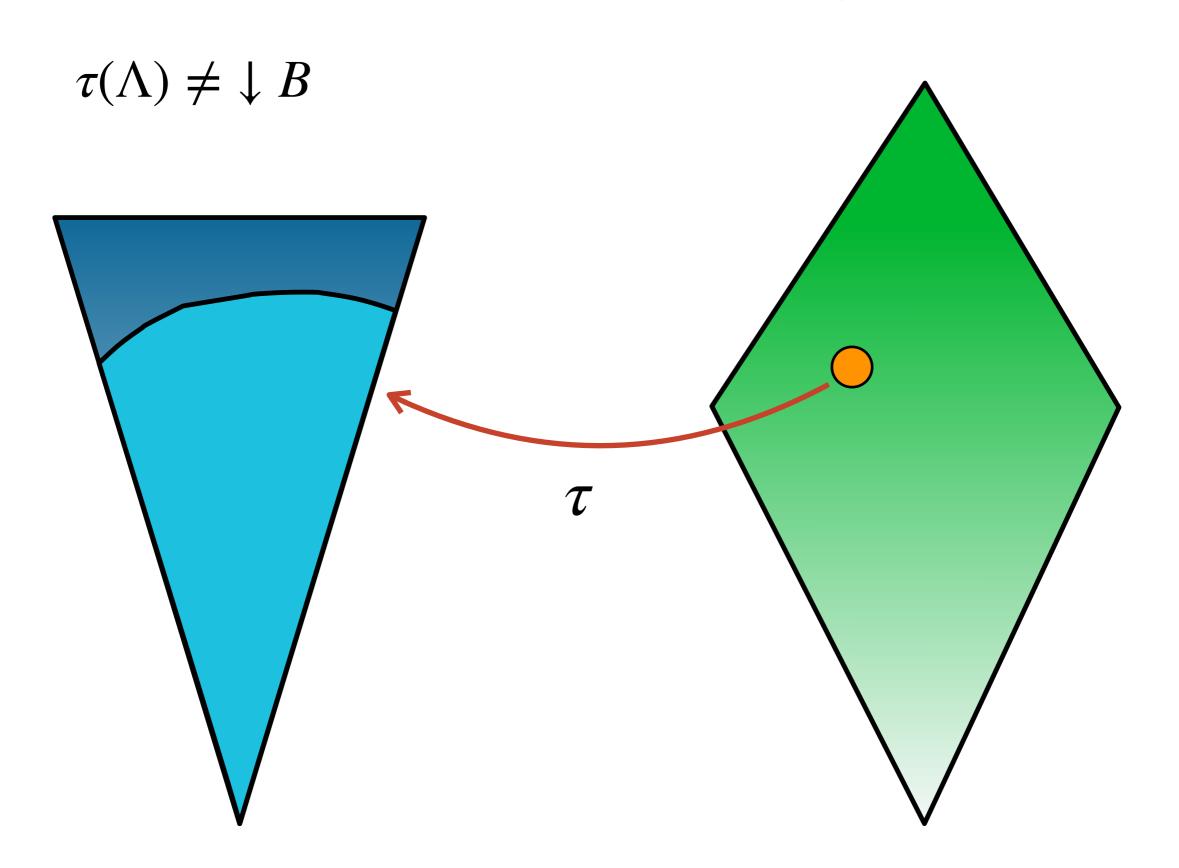
$$\sigma(\downarrow A) = \downarrow \Lambda_A \qquad \tau(\downarrow \Lambda_A) = \downarrow A$$

Naimark dilation:

$$V*\hat{A}(x)V = A(x)$$

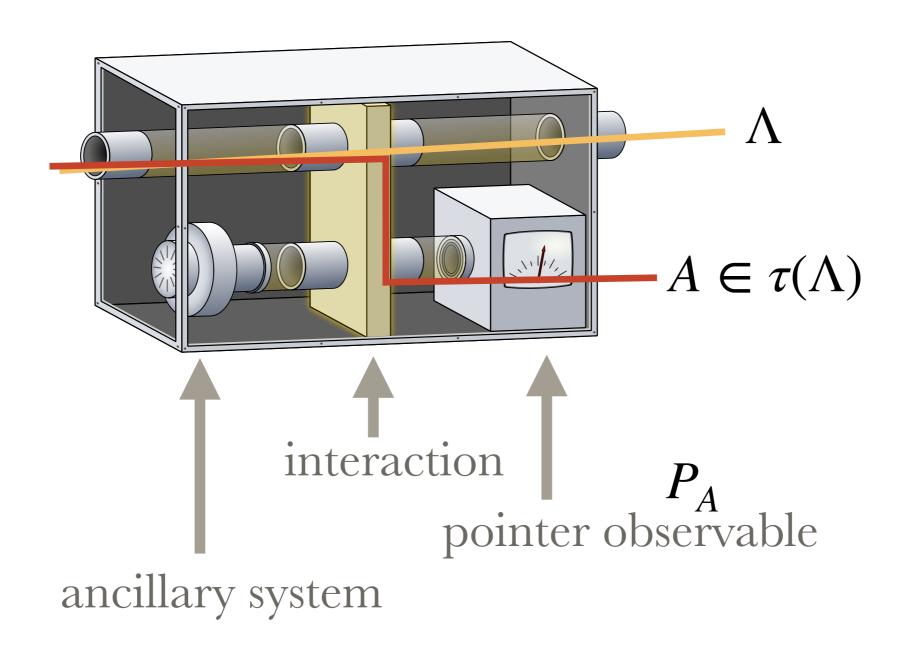
$$\Lambda_A(\varrho) = \sum_{x} \hat{A}(x) V \varrho V^* \hat{A}(x)$$

C) non-existence of a least noisy observable



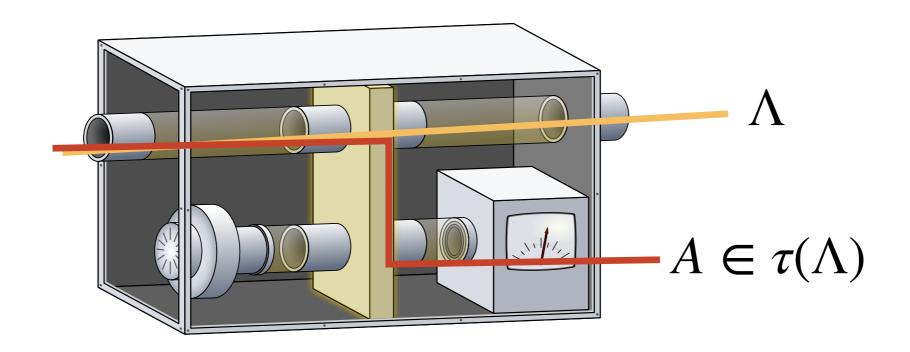
C) non-existence of a least noisy observable

 $\tau(\Lambda)$: fix a realization for Λ and go through all pointer observables

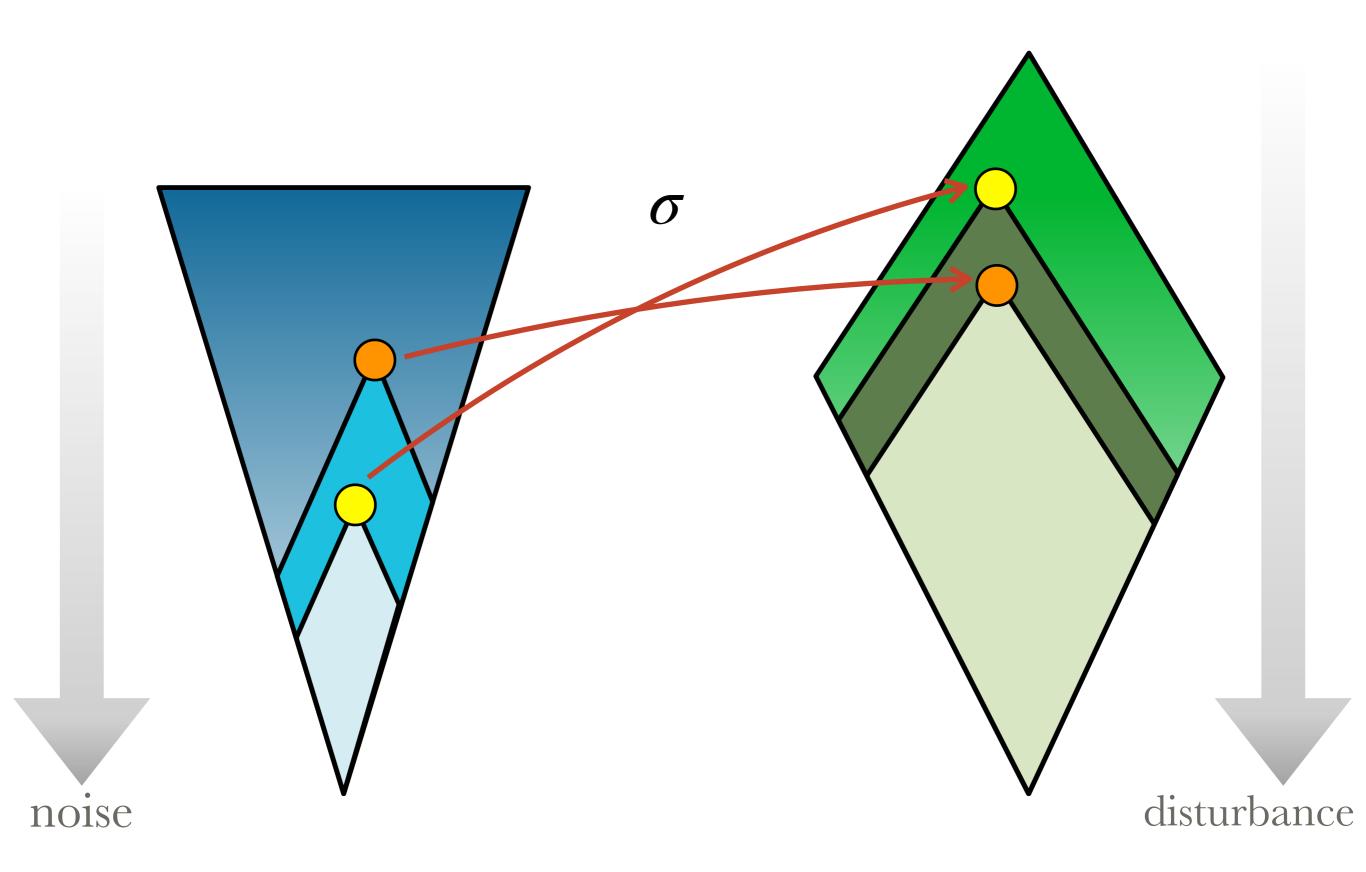


C) non-existence of a least noisy observable

 $\tau(\Lambda)$: fix a realization for Λ and go through all pointer observables



$$tr[\varrho A(x)] = tr[U\varrho \otimes \xi U^* \ I \otimes P_A(x)]$$



$$A \leqslant B \qquad \Longleftrightarrow \qquad \sigma(A) \supseteq \sigma(B)$$

$$A \leqslant B \qquad \Longleftrightarrow \qquad \sigma(A) \supseteq \sigma(B)$$

Holds also in other operational theories than quantum:

$$A \leqslant B \qquad \Rightarrow \qquad \sigma(A) \supseteq \sigma(B)$$

$$A \leqslant B \qquad \Longleftrightarrow \qquad \sigma(A) \supseteq \sigma(B)$$

Holds also in other operational theories than quantum:

$$A \leqslant B \qquad \Rightarrow \qquad \sigma(A) \supseteq \sigma(B)$$

Does **not** hold in all operational theories:

$$A \leqslant B \qquad \Leftarrow \qquad \sigma(A) \supseteq \sigma(B)$$

quantifications of noise and disturbance

Basic requirements

$$A \leq B \implies noise(A) \leq noise(B)$$

$$\Lambda \leqslant \Gamma \implies disturbance(\Lambda) \leq disturbance(\Gamma)$$

quantifications of noise and disturbance

Basic requirements

$$A \leq B \implies noise(A) \leq noise(B)$$

$$\Lambda \leqslant \Gamma \implies disturbance(\Lambda) \leq disturbance(\Gamma)$$

PRL 112, 050401 (2014)

PHYSICAL REVIEW LETTERS

week ending 7 FEBRUARY 2014

Noise and Disturbance in Quantum Measurements: An Information-Theoretic Approach

Francesco Buscemi,1,* Michael J. W. Hall,2,† Masanao Ozawa,3,‡ and Mark M. Wilde4,§

Theorem 1: For any measuring apparatus \mathcal{M} and any nondegenerate observables X and Z, the following tradeoff between noise $N(\mathcal{M}, X)$ and disturbance $D(\mathcal{M}, Z)$ holds:

$$N(\mathcal{M}, X) + D(\mathcal{M}, Z) \ge -\log c,$$
 (1)

where $c := \max_{x,z} |\langle \psi^x | \varphi^z \rangle|^2$ and the log is in base 2.

 $c: 2^{\mathscr{A}} \to 2^{\mathscr{A}}$ is a closure map if

- $2 X \subseteq c(X)$
- $3 \quad X' \subseteq X \implies c(X') \subseteq c(X)$

$$c: 2^{\mathscr{A}} \to 2^{\mathscr{A}}$$
 is a closure map if

- $2 X \subseteq c(X)$
- $3 \quad X' \subseteq X \implies c(X') \subseteq c(X)$

Examples:

- topological closure
- linear span
- convex hull

 $c: 2^{\mathscr{A}} \to 2^{\mathscr{A}}$ is a closure map if

- $2 X \subseteq c(X)$
- $3 \quad X' \subseteq X \implies c(X') \subseteq c(X)$

In a Galois connection $\tau\sigma$ and $\sigma\tau$ are closure maps.

Further, $\tau \sigma \tau = \tau$ and $\sigma \tau \sigma = \sigma$.

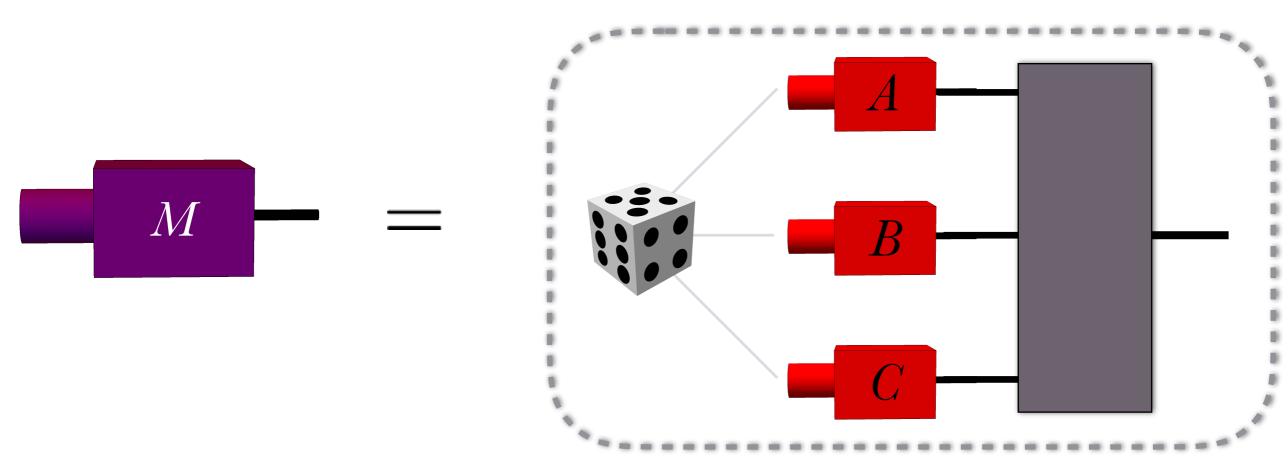
 $c: 2^{\mathscr{A}} \to 2^{\mathscr{A}}$ is a closure map if

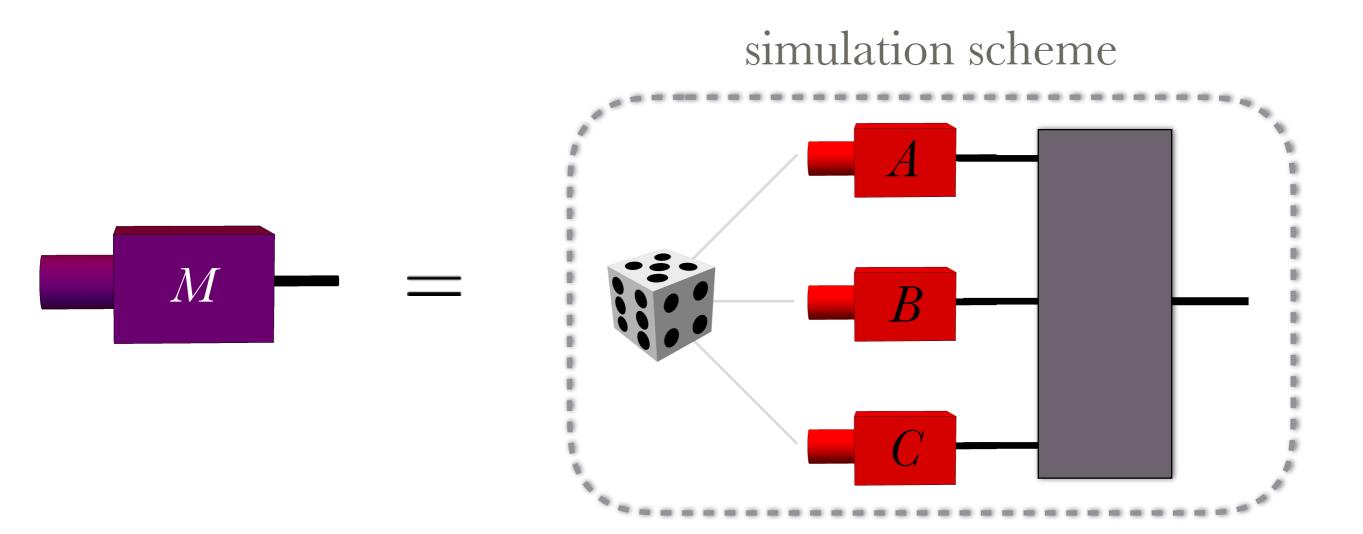
- $\mathbf{0} \quad c \circ c = c$
- $2 X \subseteq c(X)$
- $3 \quad X' \subseteq X \implies c(X') \subseteq c(X)$

In a Galois connection $(\tau\sigma)$ and $\sigma\tau$ are closure maps.

Further, $\tau \sigma \tau = \tau$ and $\sigma \tau \sigma = \sigma$.

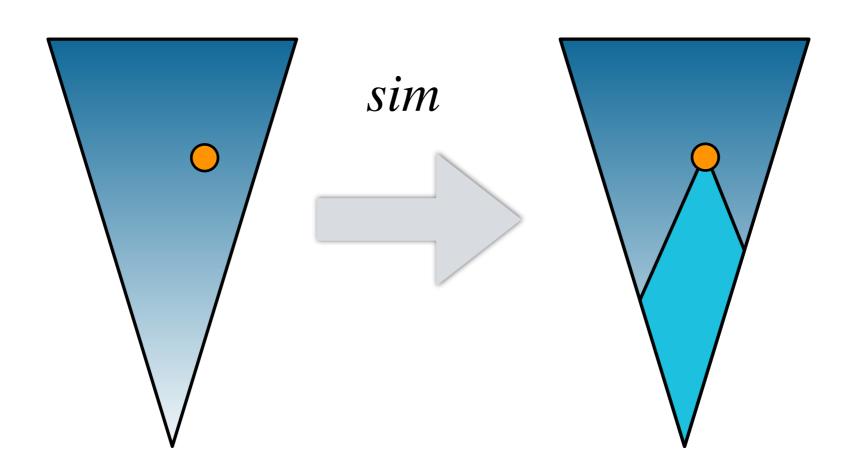
simulation scheme



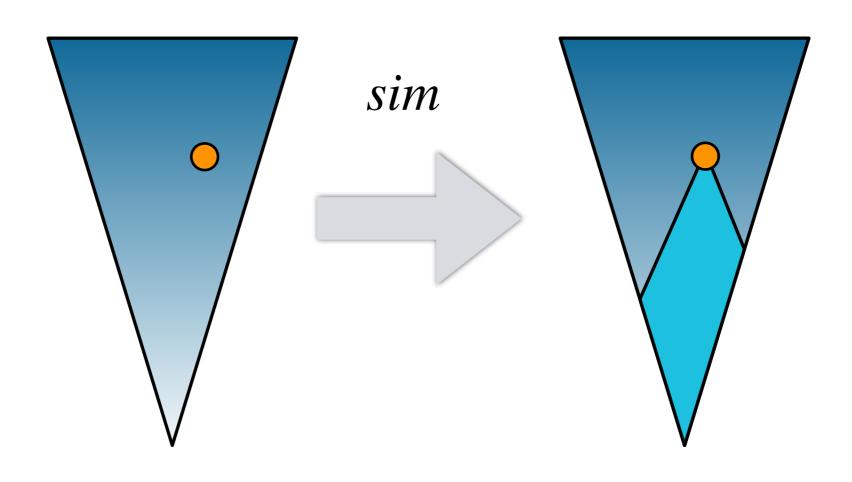


 $sim(\{A,B,C\}) = \{all observables that can be simulated from <math>A,B \text{ and } C \text{ with some randomization and post-processing} \}$

$$sim(\{A\}) = \downarrow A$$



$$sim(\{A\}) = \downarrow A$$



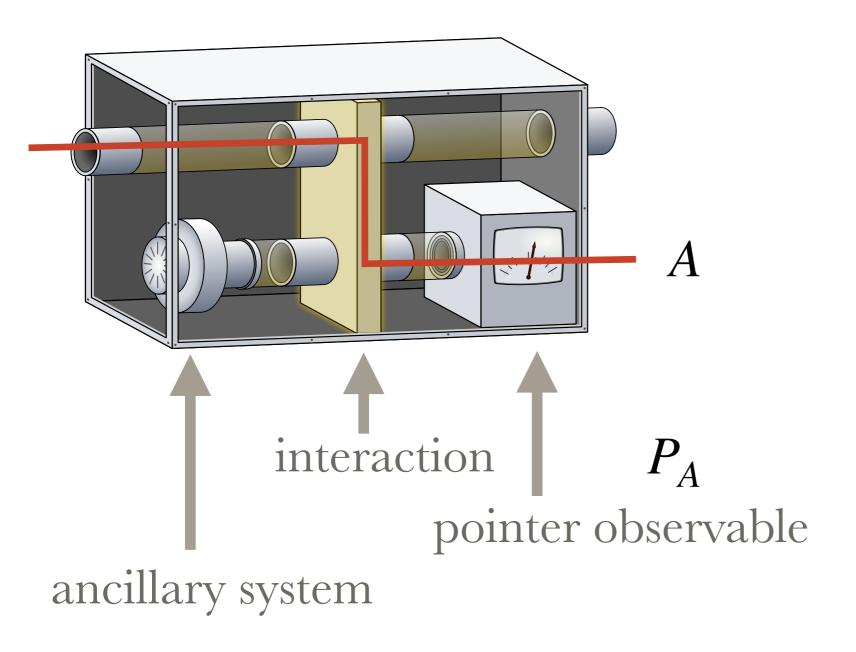
$$sim(\tau(Y)) = \tau(Y)$$

$$\tau\sigma(\{A\}) = sim(\{A\}) = \downarrow A$$

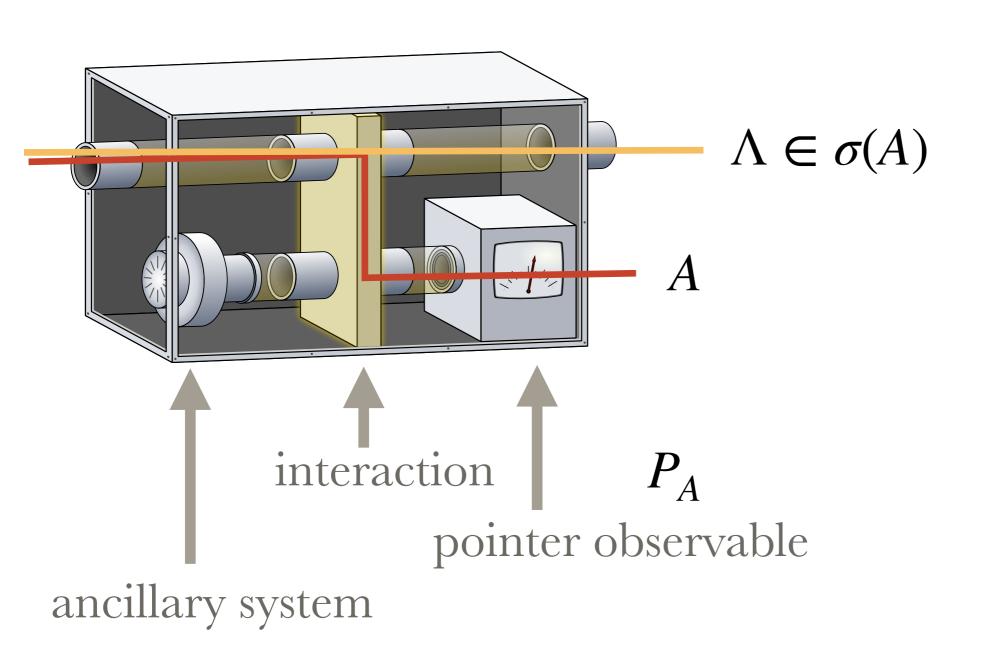
$$\tau\sigma(\{A\}) = sim(\{A\}) = \downarrow A$$

$$\tau \sigma(X) \supseteq sim(X)$$

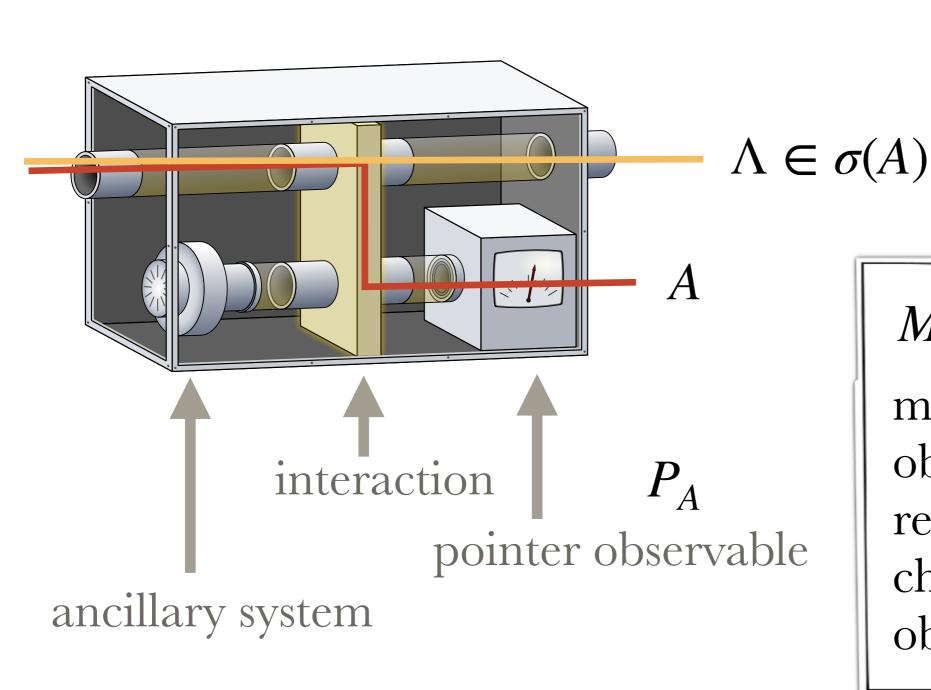
realization of A



realization of A



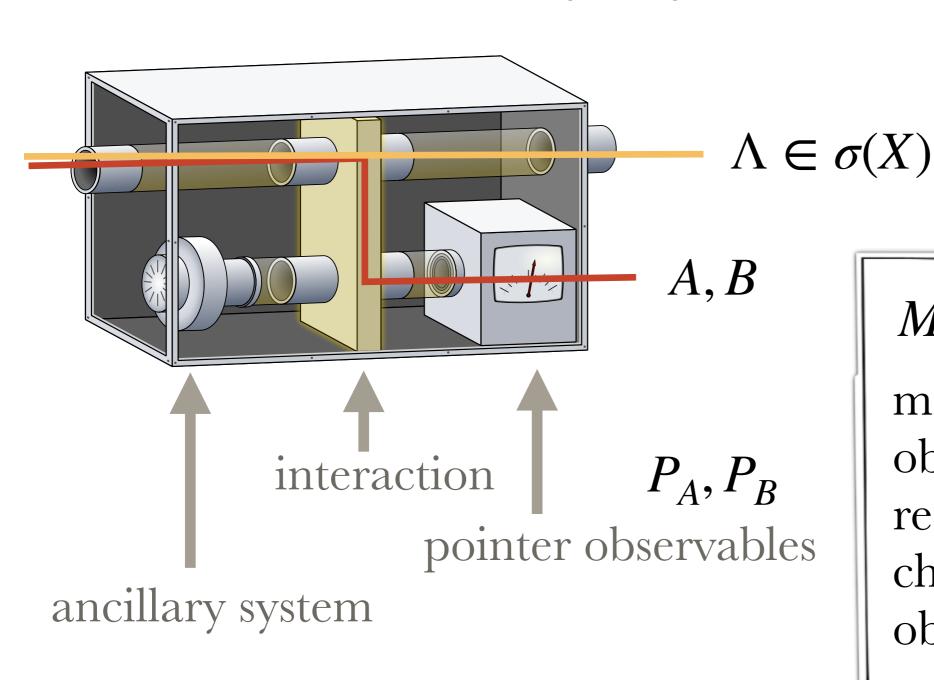
realization of A



 $M \in \tau \sigma(A)$

means that M can be obtained in all realizations of A by changing the pointer observable

realization of $X = \{A, B\}$



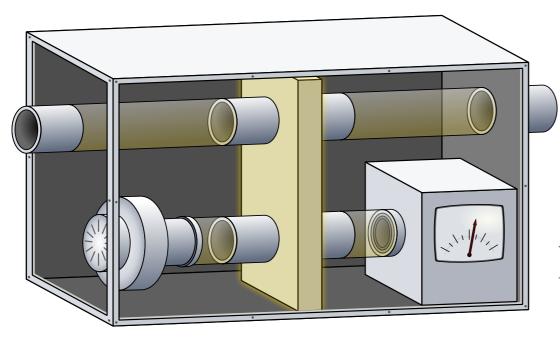
 $M \in \tau \sigma(X)$

means that M can be obtained in all realizations of X by changing the pointer observable

 $\tau\sigma(X)$ is the "information leak" required to implement X

 $\tau\sigma(X)$ is the "information leak" required to implement X

Example: it is possible that $\tau \sigma(\{A, B\}) = O$



$$\sigma({A,B}) = [discard-prepare]$$

pointer observables

$$P_A = A, P_B = B$$

interaction $U(\psi \otimes \varphi) = \varphi \otimes \psi$

 $\tau\sigma(X)$ is the "information leak" required to implement X

Example: it is possible that $\tau \sigma(\{A, B\}) = O$

However, $sim(X) \neq O$ for any countable subset X

 $\tau\sigma(X)$ is the "information leak" required to implement X

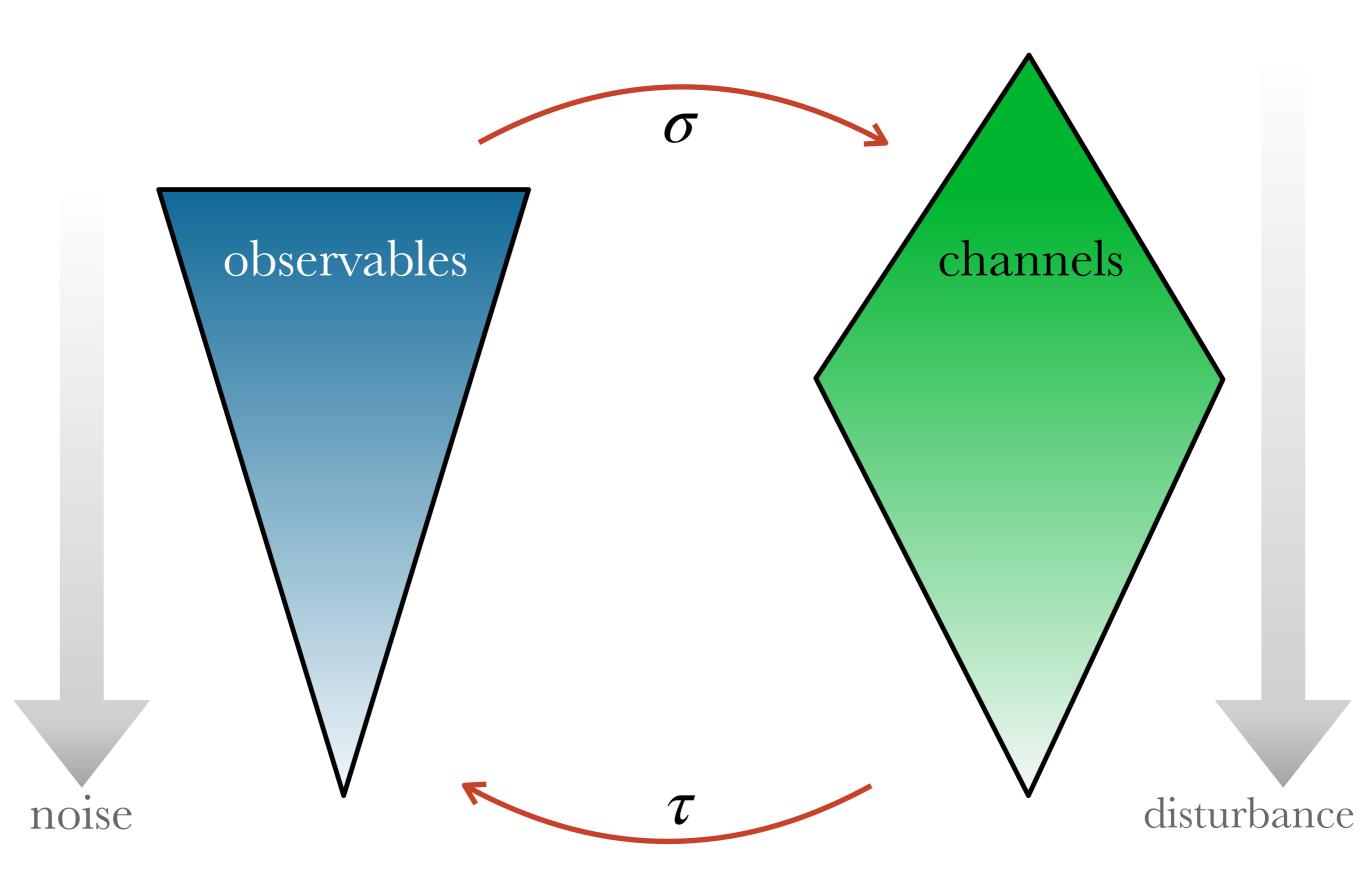
Example:

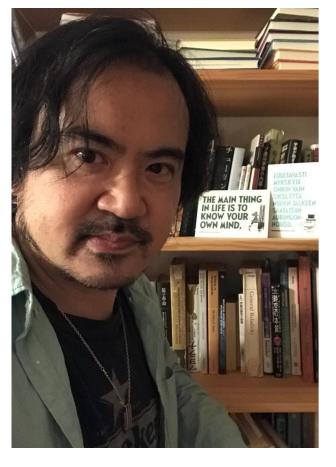
$$E(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E(2) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E(3) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A(1) = E(1) + E(2)$$
 $B(1) = E(1)$
 $A(2) = E(3)$ $B(2) = E(2) + E(3)$

$$\tau\sigma(\{A,B\}) = \downarrow E \neq sim(\{A,B\})$$

Galois connection





- TH and **Takayuki Miyadera**: Qualitative noisedisturbance relation for quantum measurements, 2013
- TH and **Takayuki Miyadera**: Universality of sequential quantum measurements, 2015
- TH and **Takayuki Miyadera**: Incompatibility of quantum channels, 2017
- TH, **Daniel Reitzner**, **Tomas Rybar** and **Mario Ziman**: Incompatibility of unbiased qubit observables and Pauli channels, 2018
- Erkka Haapasalo, TH and Takayuki Miyadera: The unavoidable information flow to environment in quantum measurements, 2018
- **Sergey Filippov**, TH and **Leevi Leppäjärvi**: Simulability of observables in general probabilistic theories, 2018
- Claudio Carmeli, TH, Takayuki Miyadera, Alessandro Toigo: Noise—Disturbance Relation and the Galois Connection of Quantum Measurements, 2019