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Symmetric states for N qudits

Let H = Cd and let us �x a basis |0〉, |1〉, . . . , |d− 1〉.
Symmetrizer PS ∈ B

(
H⊗N

)
PS|i〉 =

1

N !

∑
σ∈SN

|σ(i)〉

|i〉 := |i1, i2, . . . , iN 〉, i1, i2, . . . , iN ∈ {0, 1, . . . , d− 1}.

|σ(i)〉 := |iσ−1(1), iσ−1(2), . . . , iσ−1(N)〉

Permutationally symmetric state ρ

σρ = ρσ, σ ∈ SN

(Bosonic) symmetric state ρ

PSρ = ρPS
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Problem of separability of symmetric states

In the past decade, the problem of separability of permutationally

symmetric states has been intensively analyzed

[O. Guhne and G. Toth, Phys. Rep. 474, 1 (2009)]
[G. Toth and O. Guhne, Phys. Rev. Lett. 102, 170503 (2009)]
[G. Toth and O. Guhne, Appl. Phys. B 98, 617 (2010)]
[E. Wolfe and S. F. Yelin, Phys. Rev. Lett. 112, 140402 (2014)]
[N. Yu, Phys. Rev. A 94, 060101(R) (2016)]
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Dicke states for qubits

Fix d = 2.

Basis of Dicke (unnormalized) states:

|DN ;k〉 :=
(
N

k

)
PS| 0, . . . , 0︸ ︷︷ ︸

N−k

, 1, . . . , 1︸ ︷︷ ︸
k

〉, k = 0, 1, . . . , N

[Wolfe at al. (2014), Yu (2016)]

It has been observed by several authors that there is a strong

connection between separability and the PPT property for mixtures of

Dicke states.

[Toth at al. (2009), Wolfe at al. (2014)]
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Separability and PPT property

ρ ∈ B(H1)⊗ . . .⊗B(HN ) a (nonnormalized) state i.e. positive

semide�nite, Trρ = 1 (but not necessarily)

(Full) sperability

ρ =
∑
α

λαρ
1
α ⊗ . . .⊗ ρNα

ρiα ∈ B(Hi), λα ≥ 0

(m1, . . . ,mN )-PPT property

(Tm1
1 ⊗ . . .⊗ TmN

N )ρ is a state,

Tj the transposition on B(Hj),
(m1, . . . ,mN ) ∈ {0, 1}N
T 0
j = idj and T 1

j = Tj , i.e. all 1's in the system (m1, . . . ,mN ) mark
subsytems which are transposed.
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Separability and PPT property

Clearly, if a state ρ is separable then it has a (m1, . . . ,mn)-PPT
property for every binary system (m1, . . . ,mn).

In general, the converse implication is not true unless N = 2 and the

pair (H1, H2) is one of the following: (C2,C2), (C2,C3), (C3,C2).

In spite of this general statement, there are classes of states such that

the PPT property implies separability within them
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States diagonal in Dicke basis (for qubits)

Dicke diagonal states

ρ(pk) =

N∑
k=0

pk|DN ;k〉〈DN ;k|, pk ≥ 0

For �xed m := m1 + . . .+mN all (m1, . . . ,mN )-PPT conditions are

equivalent for symmetric states. Thus, it is enough to consider only

PPT conditions with �rst m subsystems transposed, where

m ≤ bN/2c, denoted by m-PPT.

Theorem (Yu (2016))

Let (pk)0≤k≤N be a sequence of non-negative numbers. Then the following
conditiions are equivalent:

1 The state ρ(pk) is separable

2 The state ρ(pk) has bN/2c-PPT property.
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Qudit case - stright generalization

Dicke states for qudits, d ≥ 2 arbitrary

|DN,d;k0,k1,...,kd−1
〉 =

(
N

k0, . . . , kd−1

)
PS

(
|0〉⊗k0 ⊗ . . .⊗ |d− 1〉⊗kd−1

)
ki ≥ 0, k0 + k1 + . . .+ kd−1 = N

[T.-C. Wei at al., Quantum Inf. Comput. 4, 252 (2004)]
[N. Ananth and M. Senthilvelan, Int. J. Theor. Phys. 55, 1854 (2016)]

[J. Tura at al., Quantum 2, 45 (2018)]

Dicke diagonal states for qudits

ρ =
∑

pk0,...,kd−1
|DN,d;k0,...,kd−1

〉〈DN,d;k0,...,kd−1
|

In general, PPT does not imply separability.

[Tura at al. (2018)]
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D-symmetry of states

D-binomial coe�cients

i = (i1, . . . , iN ), 0 ≤ i1, . . . , in ≤ d− 1, |i| = i1 + . . .+ iN(
N

k

)
d

:= #{i : |i| = k}, 0 ≤ k ≤ N(d− 1),

(
N

k

)
2

=

(
N

k

)
Generalized property of binomial coe�cients

(
N

k

)
d

=

min{k,d−1}∑
j=0

(
N − 1

k − j

)
d
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D-symmetry of states

D-symmetrizer

PD|i〉 =
(
N

|i|

)−1
d

∑
j: |j|=|i|

|j〉

PD is a projection.

PDPS = PSPS = PD,

PD

(
(Cd)⊗N

)
⊂ PS

(
(Cd)⊗N

)
, i.e. D-symmetric vectors are

permutationally symmetric.

D-symmetric states

ρPD = PDρ

Restricted Dicke states

|RN,d;k〉 = |Rk〉 :=
∑

i1+i2+...+iN=k

|i1, i2, . . . , iN 〉

M. Marciniak (University of Gda«sk) Symmetric states MAQIT, 2019 11 / 34



Restricted Dicke states

|Rk〉 :=
∑

i1+i2+...+iN=k

|i1, i2, . . . , iN 〉

Assume that a system is composed of N bosons with d levels of excitation

each. We make an assumption that subsequent levels di�er by a �xed

value. Then |RN,d;k〉 can be interpreted as such a state of the system that

the total number of excitations in all bosons is equal to k. It can be used

to model systems of bosons concentrated in a small area which behave as

single particle and only total energy can be recognized. Such models were

used to explain the notion of superradiance in quantum optics.
[R. H. Dicke, Phys. Rev. 93, 99 (1954)]

[M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982)]
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Restricted Dicke diagonal states

Restricted Dicke diagonal states

ρ(pk) =

N(d−1)∑
k=0

pk|RN,d;k〉〈RN,d;k| p0, p1, . . . , pN(d−1) ≥ 0.

Problem

What is the relationship between PPT property and separability for

resrticted Dicke diagonal states?
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Separable S-symmetric states

ρ =
∑
α

λαρ
1
α ⊗ . . .⊗ ρNα , ρiα = |ξiα〉〈ξiα|

Proposition

Assume that ρ is symmetric, i.e. ρ = PSρPS. If all coe�cients λα are

strictly positive then ρiα = ρjα for every α = 1, . . . , n and i, j = 1, . . . , N .

Can assume |ξiα〉 = |ξ
j
α〉 for i, j = 1, . . . , N .
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Separable D-symmetric states

ρ =
∑
α

λαρα ⊗ . . .⊗ ρα, ρα = |ξα〉〈ξα|

Proposition

Assume that ρ is D-symmetric, i.e. ρ = PDρPD. Then for each

α = 1, . . . , n, either
|ξα〉 = |d− 1〉

or there is a number z ∈ C such that

|ξα〉 = Cz

d−1∑
i=0

zi|i〉,

where Cz is a normalization.
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Entanglement witnesses for D-symmetric systems

De�nition

A Hermitian operator W ∈ B((Cd)⊗N ) is an entaglement witness for the

D-symmetric system if

1 W = PDWPD

2 Tr(Wσ) ≥ 0 for all pure separable D-symmetric states

Proposition

A D-symmetric state ρ is separable if and only if Tr(Wρ) ≥ 0 for every

entanglement witness W for the D-symmetric system.

A simple consequence of the hyperplane separation theorem.

[Yu (2016)]
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Entanglement witnesses for D-symmetric systems

|R̃k〉 =
(
N

k

)−1
d

∑
|i|=k

|i〉 =
(
N

k

)−1
d

|Rk〉, 〈R̃k|Rl〉 = δkl.

Proposition

Let n1 =
⌊
N(d−1)

2

⌋
and n2 =

⌊
N(d−1)−1

2

⌋
. Let two systems (sk)0≤k≤n1

and (tk)0≤k≤n2 of complex numbers be given. De�ne

V(s) =

n1∑
k,l=0

sksl|R̃k+l〉〈R̃k+l|

U(t) =

n2∑
k,l=0

tktl|R̃k+l+1〉〈R̃k+l+1|.

Then V(s) and U(t) are entanglement witnesses for D-symmetric systems.
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Moment problem � de�nition

De�nition

Let (pk)
n
k=0 be a �nite sequence of real numbers. We say that the

sequence (pk) is a solution of the generalized moment problem on the

interval [0,∞) if there exists a positive measure σ with support contained

in [0,∞) such that

pk =


∫ ∞
0

tkdσ(t), k = 0, 1, . . . , n− 1,∫ ∞
0

tndσ(t) +M, k = n,

where M ≥ 0. Alternatively, we say that it is a solution of the strict

moment problem on the interval [0,∞) if it is a solution of the generalized

moment problem with M = 0.

[M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremal

Problems (AMS, Providence, RI, 1977), Russian ed. in 1973]
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Moment problem � Hankel matrices

Hankel matrices

n0 =
⌊n
2

⌋
, n1 =

⌊
n− 1

2

⌋

(pk+l)
n0
k,l=0 =


p0 p1 p2 · · · pn0

p1 p2 p3 · · · pn0+1

p2 p3 p4 · · · pn0+2
...

...
...

...

pn0 pn0+1 pn0+2 · · · p2n0

 ,

(pk+l+1)
n1
k,l=0 =


p1 p2 p3 · · · pn1+1

p2 p3 p4 · · · pn1+2

p3 p4 p5 · · · pn1+3
...

...
...

...

pn1+1 pn1+2 pn1+3 · · · p2n1+1
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Moment problem � characterization

Theorem

A sequence (pk)
n
k=0 is a solution of the generalized moment problem if and

only if both Hankel matrices (pk+l)
n0
k,l=0 and (pk+l+1)

n1
k,l=0 are positive

semide�nite. If both matrices are strictly positive de�nite then the

sequence is a solution of the strict moment problem.

[M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremal

Problems (AMS, Providence, RI, 1977)]

Example: n = 9, n0 = 4, n1 = 4
p0 p1 p2 p3 p4
p1 p2 p3 p4 p5
p2 p3 p4 p5 p6
p3 p4 p5 p6 p7
p4 p5 p6 p7 p8




p1 p2 p3 p4 p5
p2 p3 p4 p5 p6
p3 p4 p5 p6 p7
p4 p5 p6 p7 p8
p5 p6 p7 p8 p9
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Restricted Dicke diagonal states with PPT

Theorem

Let m ≤ N/2. The state ρ(pk) is m-PPT if and only if

(a) matrices (pi+j)
m(d−1)
i,j=0 and (pi+j+1)

m(d−1)−1
i,j=0 are positive de�nite,

when N = 2m,

(b) matrices (pi+j+l)
m(d−1)
i,j=0 , l = 0, . . . , (N − 2m)(d− 1), are positive

de�nite, when 2m < N .

Example: d = 3, N = 3, m = 1

ρ(pk) =
6∑

k=0

pk|Rk〉〈Rk|

 p0 p1 p2
p1 p2 p3
p2 p3 p4

  p1 p2 p3
p2 p3 p4
p3 p4 p5

  p2 p3 p4
p3 p4 p5
p4 p5 p6
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Restricted Dicke diagonal states with PPT

Theorem

Let m ≤ N/2. The state ρ(pk) is m-PPT if and only if

(a) matrices (pi+j)
m(d−1)
i,j=0 and (pi+j+1)

m(d−1)−1
i,j=0 are positive de�nite,

when N = 2m,

(b) matrices (pi+j+l)
m(d−1)
i,j=0 , l = 0, . . . , (N − 2m)(d− 1), are positive

de�nite, when 2m < N .

Example: d = 3, N = 4, m = 2, ρ(pk) =
∑9

k=0 pk|Rk〉〈Rk|
p0 p1 p2 p3 p4
p1 p2 p3 p4 p5
p2 p3 p4 p5 p6
p3 p4 p5 p6 p7
p4 p5 p6 p7 p8




p1 p2 p3 p4 p5
p2 p3 p4 p5 p6
p3 p4 p5 p6 p7
p4 p5 p6 p7 p8
p5 p6 p7 p8 p9
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PPT vs moment problem

Corollary

Assume that N is even and let (pk)0≤k≤N(d−1) be a sequence of

nonnegative numbers. The following are equivalent:

1 ρ(pk) is N/2-PPT,

2 The sequence (pk) is a solution of generalized moment problem

Moreover, if d = 2 and N is odd, then the following are equivalent

1 ρ(pk) is (N − 1)/2-PPT,

2 The sequence (pk) is a solution of generalized moment problem
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PPT vs moment problem

d = 2, N = 5, ρ(pk) =
∑5

k=0 pk|Rk〉〈Rk|
2-PPT:  p0 p1 p2

p1 p2 p3
p2 p3 p4

  p1 p2 p3
p2 p3 p4
p3 p4 p5


Moment problem: n = 5, n0 = 2, n1 = 2. The above matrices are

precisely the two Hankel matrices from the theorem.
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Separability vs moment problem

Proposition

If (pk)k=0,1,...,N(d−1) is a geometric sequence then ρ(pk) separable.

Proof. Let pk = tk for some t > 0.

ω = exp

(
2πi

N(d− 1) + 1

)

|α̂〉 =
d−1∑
j=0

tj/2ωαj |j〉, α = 0, 1, . . . , N(d− 1).

Then

ρ(tk) =
1

N(d− 1) + 1

N(d−1)∑
α=0

|α̂〉〈α̂|⊗N
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Separability vs moment problem

Theorem

Let d ≥ 2 and N be arbitrary. The state ρ(pk) is fully separable if and only

the sequence (pk)
N(d−1)
k=0 is a solution of the generalized moment problem.

Proof of necessity. Since ρ(pk) is separable, Tr(ρ(pk)W ) ≥ 0 for every

entanglement witness for D-symmetric systems. In particular, for any

sequence (sk)0≤k≤bN(d−1)/2c

bN(d−1)/2c∑
k,l=0

skslpk+l = Tr(ρ(pk)V(s)) ≥ 0

what means that (pk+l)0≤k,l≤n0 is positive semide�nte. Similarly, for the

second Hankel matrix. Hence (pk) is a solution of moment problem.
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Separability vs moment problem

Theorem

Let d ≥ 2 and N be arbitrary. The state ρ(pk) is fully separable if and only

the sequence (pk)
N(d−1)
k=0 is a solution of the generalized moment problem.

Proof of su�ciency. Since (pk) is a solution of the generalized moment

problem, there are a positive measure σ supported on [0,∞) and M ≥ 0
such that

pk =

∫ ∞
0

tkdσ(t) + δk,N(d−1)M.

Then

ρ(pk) =

∫ ∞
0

ρ(tk)dσ(t) +M |RN(d−1)〉〈RN(d−1)|.

|RN(d−1)〉〈RN(d−1)| = |d− 1〉〈d− 1|⊗N , so it is separable. According to

Proposition from the previous slide, each ρ(tk) is also a separable state.

Consequently, ρ(pk) is separable too.
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Main result

Theorem (Rutkowski, Banacki, M.)

Assume that d ≥ 2 is arbitrary and N is even. Let (pk)0≤k≤N(d−1) be a

sequence of nonnegative numbers. The following conditions are equivalent:

(a) ρ(pk) is fully separable.

(b) ρ(pk) is N/2-PPT

(c) The sequence (pk) is a solution of the generalized moment problem.

Moreover, if d = 2 and N is odd the following conditions are equivalent:

(a) ρ(pk) is fully separable.

(b) ρ(pk) is (N − 1)/2-PPT

(c) The sequence (pk) is a solution of the generalized moment problem.

Let us note that for d = 2, i.e. for qubits, the above equivalence was
proved in [Yu (2016)].
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The case d ≥ 3 and N odd

On the contrary to the case d = 2, if N is odd then N−1
2 -PPT property

does not imply separability of ρ(pk) for d ≥ 3.
Let N = 3 and d = 3 and let

(pk)0≤k≤6 = (1, 1/4, 1/8, 1/9, 1/8, 1/4, 1) .

ρ is a 1-PPT state. Indeed, one can easily check that matrices 1 1/4 1/8
1/4 1/8 1/9
1/8 1/9 1/8

  1/4 1/8 1/9
1/8 1/9 1/8
1/9 1/8 1/4

  1/8 1/9 1/8
1/9 1/8 1/4
1/8 1/4 1


are positive semide�nite. On the other hand the determinant of the
Hankel matrix (n0 = 3)

(pk+l)0≤k,l≤3 =


1 1/4 1/8 1/9
1/4 1/8 1/9 1/8
1/8 1/9 1/8 1/4
1/9 1/8 1/4 1


is negative, hence it is not positive semide�nite.
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q-CCR relations

Interpolating family of relations

a : H → B(H) antilinear, q ∈ [−1, 1]

a(f)a(g)† − qa(g)†a(f) = 〈f |g〉I

[M. Bo»ejo, R. Speicher, Comm. Math. Phys. 137 (1991)]

q-statistics: q = 1 bosonic, q = −1 fermionic, q = 0 Boltzman

statistics

Noncommutative probability: q = 1 → classical independence,

q = 0 → freeness,

q-probability for general q (CLT, Poisson limit theorem, q-Brownian
processes)

[M. Bo»ejo, B. Kummerer, R. Speicher, Comm. Math. Phys. 185 (1997)]
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qij-CCR relations

Generalizations of q-relations: qij ∈ [−1, 1], i, j = 1, . . . , d

|f1〉, |f2〉, . . . , |fd〉 orthonormal basis of H

aia
†
j − qija

†
jai = δijI

[M. Bo»ejo, B. Kummerer, R. Speicher, Comm. Math. Phys. 185 (1997)]
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q-CCR � second quantization

q-relations are obtained by the second quantization procedure.

[O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical

Mechanics, vol. 2, Springer, 2003]

q-deformed Fock space Fq(H) =
⊕∞

N=0H⊗N

〈f1 ⊗ . . .⊗ fN |g1 ⊗ . . .⊗ gN 〉q =
∑
σ∈Sn

ql(σ)
N∏
i=1

〈fi|qσ(i)〉

q-symmetrizer Pq =
⊕∞

N=0 P
(N)
q , P

(N)
q : H⊗N → H⊗N

P (N)
q |f1 ⊗ . . .⊗ fN 〉 =

∑
σ∈Sn

ql(σ)|fσ(1) ⊗ . . .⊗ fσ(N)〉

〈ξ|η〉q = 〈ξ|Pqη〉0
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D-CCR relations

CN > 0, P∞D =

∞∑
N=0

CNP
(N)
D , FD(Cd) = P∞D

(
F(Cd)

)
Second quantization: a†i = P∞D b†iP

∞
D where bi|i1, . . . , iN 〉 = |i, i1, . . . , iN 〉.

Theorem (RBM)

There are

a sequence (CN )N≥0 of positive numbers

numbers qij(d) ∈ [−1, 1], 0 ≤ i, j ≤ d− 1

an invertible operator J : FD(Cd)→ FD(Cd)
such that

aia
†
j − qi,j(d)a

†
jai = δijJ

Possible ways to proceed: D-statistics (?), D-probaility: CLT, D-Gaussian

(?)
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Conclusions

We introduced the notion of D-symmetry for multipartite states which

is stronger then bosonic symmetry.

We considered D-symmetric analogs of Dicke states: restricted Dicke

states.

We proved that for even number N of systems N/2-PPT property is

equivalent to separability. It was done using classical results on

moment problem.

We constructed concrete model satisfying qij-CCR relations of

Bo»ejko-Speicher type.

THANK YOU!
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