Structure of Sequential State Discrimination

Min Namkung and Younghun Kwon Department of Applied Physics, Hanyang University

- Part I: Theory
- Scenario of sequential state discrimination
- Constructing optimization problem
- Comparison with other scenarios
- Part II: Application
- Realistic QKD
- Implementing sequential state discrimination
- Sequential state discrimination in noisy channel
- Comparison with probabilistic cloning strategy

HYU

Classical scheme of communication

Classical scheme of communication

Classical scheme of communication

Insecurity of classical scheme
Even Eve eavesdrops secure message during Alice and Bob communicate Alice and Bob cannot notice Eve.

Quantum key distribution

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Quantum key distribution

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Quantum key distribution

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Quantum key distribution

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Quantum key distribution

C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Quantum key distribution

General structure of quantum key distribution
Quantum key distribution can be expressed as quantum state discrimination. For example, if Alice and Bob perform B92 protocol, then this scenario can be expressed as unambiguous discrimination.
G. Cariolaro, Quantum Communications (Springer, 2015).
C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

Multiparty QKD based on sequential state discrimination

$\left\{M_{0}, M_{1}, \cdots, M_{n}\right\}$

message preparation
and encoding

$S_{n}=\left\{\rho_{i}\right\}_{i=1}^{n}$

Multiparty QKD based on sequential state discrimination

Multiparty QKD based on sequential state discrimination

$$
\begin{gathered}
\left\{M_{0}^{(1)}, M_{1}^{(1)}, \cdots, M_{n}^{(1)}\right\}
\end{gathered} \begin{aligned}
& \left\{M_{0}^{(2)}, M_{1}^{(2)}, \cdots, M_{n}^{(2)}\right\}
\end{aligned}\left\{M_{0}^{(N)}, M_{1}^{(N)}, \cdots, M_{n}^{(N)}\right\}
$$

Multiparty QKD based on sequential state discrimination

Multiparty QKD based on sequential state discrimination

POVM for unambiguous discrimination

POVM for unambiguous discrimination

I. $\quad M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \quad \forall i \in\{0, \cdots, n\}$
II. $M_{0}+M_{1}+\cdots+M_{n}=I$

Theorem 1. [T. Rudolph et al.] If $\operatorname{supp}\left(\rho_{i}\right)$ satisfies $\operatorname{supp}\left(\rho_{i}\right) \notin \mathrm{U}_{j \neq i} \operatorname{supp}\left(\rho_{j}\right)$ for all $\rho_{i} \in S_{n}$, then there exists POVM that performs unambiguous discrimination on S_{n}.
III. $\quad \operatorname{Tr} \rho_{i} M_{j}=\delta_{i j} \operatorname{Tr} \rho_{i} M_{i} \quad \forall i \neq j$

POVM for unambiguous discrimination

I. $\quad M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \quad \forall i \in\{0, \cdots, n\}$
II. $M_{0}+M_{1}+\cdots+M_{n}=I$
III. $\quad \operatorname{Tr} \rho_{i} M_{j}=\delta_{i j} \operatorname{Tr} \rho_{i} M_{i} \quad \forall i \neq j$
I. $\quad M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \quad \forall i \in\{0, \cdots, n\}$
II. $M_{0}+M_{1}+\cdots+M_{n}=I$
III. $\left\langle\psi_{i}\right| M_{j}\left|\psi_{i}\right\rangle=\delta_{i j}\left\langle\psi_{i}\right| M_{i}\left|\psi_{i}\right\rangle \forall i \neq j$

Theorem 1. [T. Rudolph et al.] If $\operatorname{supp}\left(\rho_{i}\right)$ satisfies $\operatorname{supp}\left(\rho_{i}\right) \notin \bigcup_{j \neq i} \operatorname{supp}\left(\rho_{j}\right)$ for all $\rho_{i} \in S_{n}$, then there exists POVM that performs unambiguous discrimination on S_{n}. However, exploiting Theorem 1 is quite difficult.

Theorem 2. [A. Chefles] If \bar{S}_{n} is a set of linearly independent pure states, then there exists POVM that performs unambiguous discrimination on \bar{S}_{n}.

POVM for unambiguous discrimination

I. $\quad M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \quad \forall i \in\{0, \cdots, n\}$
II. $M_{0}+M_{1}+\cdots+M_{n}=I$
III. $\operatorname{Tr} \rho_{i} M_{j}=\delta_{i j} \operatorname{Tr} \rho_{i} M_{i} \quad \forall i \neq j$
I. $\quad M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \quad \forall i \in\{0, \cdots, n\}$
II. $M_{0}+M_{1}+\cdots+M_{n}=I$
III. $\left\langle\psi_{i}\right| M_{j}\left|\psi_{i}\right\rangle=\delta_{i j}\left\langle\psi_{i}\right| M_{i}\left|\psi_{i}\right\rangle \quad \forall i \neq j$

Theorem 1. [T. Rudolph et al.] If $\operatorname{supp}\left(\rho_{i}\right)$ satisfies $\operatorname{supp}\left(\rho_{i}\right) \notin \bigcup_{j \neq i} \operatorname{supp}\left(\rho_{j}\right)$ for all $\rho_{i} \in S_{n}$, then there exists POVM that performs unambiguous discrimination on S_{n}. However, exploiting Theorem 1 is quite difficult.

Theorem 2. [A. Chefles] If \bar{S}_{n} is a set of linearly independent pure states, then there exists POVM that performs unambiguous discrimination on \bar{S}_{n}.

Simplified Proof. $\quad M_{i}=\alpha_{i}\left|\tilde{\psi}_{i}\right\rangle\left\langle\tilde{\psi}_{i}\right|(i=1, \cdots, n), \quad \alpha_{i} \geq 0 \wedge \alpha_{i} \in \mathbb{R}$ [D. Ha and Y. Kwon]

$$
\begin{aligned}
\left|\tilde{\psi}_{i}\right\rangle & =\sum_{j=1}^{n} G_{j i}^{-1}\left|\psi_{j}\right\rangle, G=\left\{\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right\}_{i, j=1}^{n}: \text { Gram matrix } \\
M_{0} & =I-M_{1}-M_{2}-\cdots-M_{n}
\end{aligned}
$$

D. Ha and Y. Kwon, Analysis of optimal unambiguous discrimination of three pure quantum states, Phys. Rev. A 91, 062312 (2015).

POVM for unambiguous discrimination

Power of Theorem 2.

POVM for unambiguous discrimination

Power of Theorem 2.

POVM for unambiguous discrimination

Theorem 3. [D. Ha and Y. Kwon] Let define Hermitian matrix $\bar{M}=\left\{\left\langle\psi_{i}\right| M_{0}\left|\psi_{j}\right\rangle\right\}_{i, j=1}^{n}$ and all $m \times m$ ($m<n$) principal submatrices \bar{M}_{m}. M_{0} is positive-semidefinite if and only if every \bar{M} and $\forall \bar{M}_{m}$ is positive-semidefinite.

POVM for unambiguous discrimination

Theorem 3. [D. Ha and Y. Kwon] Let define Hermitian matrix $\bar{M}=\left\{\left\langle\psi_{i}\right| M_{0}\left|\psi_{j}\right\rangle\right\}_{i, j=1}^{n}$ and all $m \times m(m<n)$ principal submatrices \bar{M}_{m}. M_{0} is positive-semidefinite if and only if every \bar{M} and $\forall \bar{M}_{m}$ is positive-semidefinite.

POVM for unambiguous discrimination

Power of Theorem 3.

POVM for unambiguous discrimination

Power of Theorem 3.

POVM for unambiguous discrimination

Constructing Kraus operator

$$
\text { POVM } \quad\left\{\begin{array}{cl}
\text { I. } & M_{i} \geq 0, M_{i}=M_{i}^{\dagger} \forall i \in\{0, \cdots, n\} \\
\text { II. } & M_{0}+M_{1}+\cdots+M_{n}=I \\
\text { III. } & \left\langle\psi_{i}\right| M_{j}\left|\psi_{i}\right\rangle=\delta_{i j}\left\langle\psi_{i}\right| M_{i}\left|\psi_{i}\right\rangle \forall i \neq j
\end{array}\right.
$$

$$
\text { Kraus operator } \begin{cases}\text { I. } & M_{i}=K_{i}^{\dagger} K_{i} \\ \text { II. } & K_{i}\left|\psi_{i}\right\rangle \propto\left|\phi_{i}\right\rangle \text { where } \\ & \left\{\left|\phi_{1}\right\rangle, \cdots,\left|\phi_{n}\right\rangle\right\} \text { : linearly independent }\end{cases}
$$

Constructing Kraus operator

Constructing Kraus operator

$$
i=0
$$

K_{i} can be obtained using following lemma:
Lemma. [M. Namkung and Y. Kwon]

$$
M_{0}=K_{0}^{\dagger} K_{0} \text { if and only if }\left\langle\psi_{i}\right| M_{0}\left|\psi_{j}\right\rangle=\left\langle\psi_{i}\right| K_{0}^{\dagger} K_{0}\left|\psi_{j}\right\rangle .
$$

Kraus operator
I. $M_{i}=K_{i}^{\dagger} K_{i}$
II. $\quad K_{i}\left|\psi_{i}\right\rangle \propto\left|\phi_{i}\right\rangle$ where
$\left\{\left|\phi_{1}\right\rangle, \cdots,\left|\phi_{n}\right\rangle\right\}$: linearly independent

Property of Kraus operator

Property of Kraus operator

Property of Kraus operator

Optimization problem (result)

$$
\begin{aligned}
\operatorname{maximize} & P_{s}^{\left(B_{1}, \cdots, B_{N}\right)}=\sum_{i=1}^{n} q_{i} \alpha_{i}^{(1)} \alpha_{i}^{(2)} \alpha_{i}^{(3)} \times \cdots \times \alpha_{i}^{(N)} \\
\text { subject to } & \left(\alpha_{1}^{(I)}, \cdots, \alpha_{n}^{(I)}\right) \in C_{i n t}^{(I)} \quad \forall I \leq N-1 \\
& \left(\alpha_{1}^{(I)}, \cdots, \alpha_{n}^{(I)}\right) \in \partial C^{(N)}
\end{aligned}
$$

Remark: $\alpha_{i}^{(I)}$ is probability that Bob I obtains outcome i, given that Alice prepares $\left|\psi_{i}\right\rangle$.

Optimization problem (two pure states, three receivers)
$\operatorname{maximize} P_{s}^{\left(B_{1}, B_{2}, B_{3}\right)}=q_{1} \alpha_{1} \beta_{1} \gamma_{1}+q_{2} \alpha_{2} \beta_{2} \gamma_{2}$
subject to $\quad\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)>\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}$

$$
\begin{aligned}
& \left(1-\beta_{1}\right)\left(1-\beta_{2}\right)>\left|\left\langle\phi_{1}^{\left(B_{1}\right)} \mid \phi_{2}^{\left(B_{1}\right)}\right\rangle\right|_{2}^{2} \\
& \left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)=\left|\left\langle\phi_{1}^{\left(B_{2}\right)} \mid \phi_{2}^{\left(B_{2}\right)}\right\rangle\right|^{2}
\end{aligned}
$$

Optimization problem (two pure states, three receivers)

$\operatorname{maximize} P_{s}^{\left(B_{1}, B_{2}, B_{3}\right)}=q_{1} \alpha_{1} \beta_{1} \gamma_{1}+q_{2} \alpha_{2} \beta_{2} \gamma_{2}$
subject to $\quad\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)>\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}$

$$
\begin{aligned}
& \left(1-\beta_{1}\right)\left(1-\beta_{2}\right)>\left|\left\langle\phi_{1}^{\left(B_{1}\right)} \mid \phi_{2}^{\left(B_{1}\right)}\right\rangle\right|_{2}^{2} \\
& \left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)=\left|\left\langle\phi_{1}^{\left(B_{2}\right)} \mid \phi_{2}^{\left(B_{2}\right)}\right\rangle\right|^{2}
\end{aligned}
$$

Remark: $\left(\gamma_{1}, \gamma_{2}\right)$ is obtained by finding a tangential point between a plane $P^{\left(B_{1}, B_{2}, B_{3}\right)}=q_{1} \alpha_{1} \beta_{1} \gamma_{1}+q_{2} \alpha_{2} \beta_{2} \gamma_{2}$ and a surface $\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)=\left|\left\langle\phi_{1}^{\left(B_{1}\right)} \mid \phi_{2}^{\left(B_{2}\right)}\right\rangle\right|^{2}$.

Optimization problem (two pure states, three receivers)

$$
\begin{aligned}
& \operatorname{maximize} \quad P_{s}^{\left(B_{1}, B_{2}, B_{3}\right)}=q_{1} \alpha_{1} \beta_{1}+q_{2} \alpha_{2} \beta_{2}-2\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right| \sqrt{\frac{q_{1} q_{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)}} \\
& \text { subject to } \quad\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)>\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2} \\
& \beta_{2} \leq \frac{\beta_{1}\left(1-\beta_{1}\right)}{\beta_{1}\left(1-\beta_{1}\right)+X\left(\alpha_{1}, \alpha_{2}\right)}, \quad X\left(\alpha_{1}, \alpha_{2}\right)=\frac{q_{2} \alpha_{2}}{q_{1} \alpha_{1}} \frac{\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} \\
& \beta_{1} \leq \frac{\beta_{2}\left(1-\beta_{2}\right)}{\beta_{2}\left(1-\beta_{2}\right)+Y\left(\alpha_{1}, \alpha_{2}\right)}, \quad Y\left(\alpha_{1}, \alpha_{2}\right)=\frac{q_{1} \alpha_{1}}{q_{2} \alpha_{2}} \frac{\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}
\end{aligned}
$$

Remark: In general, this optimization problem can be solved by using nonlinear programming, including random search method, sequential linear programming, and penalty function method.

Optimal success probability (two pure states with equal prior probabilities, N receivers)

$$
\begin{array}{rll}
\text { Discriminating two states: } & P_{S}^{\left(B_{1}, \cdots, B_{N}\right) o p t}=\left(1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{1 / N}\right)^{N} & \left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|<\left(2^{1 / N}-1\right)^{N} \\
\text { Discriminating one out of two states: } & P_{S}^{\left(B_{1}, \cdots, B_{N}\right) o p t}=\frac{1}{2}\left(1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2 / N}\right) & \left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right| \geq\left(2^{1 / N}-1\right)^{N}
\end{array}
$$

Remark 1: Optimal success probability satisfies the result of [J. A. Bergou et al.], and [C.-Q. Pang et al].

Remark 2: Sequential state discrimination of two pure states is suitable for multiparty QKD, when the number of receivers is not too many.

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2}\right|+\bar{r}_{2}\left|\bar{r}_{2}\right\rangle\left\langle\bar{r}_{2}\right|
\end{aligned}
$$

(Sketch of POVM)

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2}\right|+\bar{r}_{2}\left|\bar{r}_{2}\right\rangle\left\langle\bar{r}_{2}\right|
\end{aligned}
$$

(Sketch of POVM)

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2}\right|+\bar{r}_{2}\left|\bar{r}_{2}\right\rangle\left\langle\bar{r}_{2}\right|
\end{aligned}
$$

(Sketch of POVM)

$$
\left\{M_{i} \oplus \bar{M}_{j}\right\}_{i, j=0}^{2}
$$

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2} \mid+\bar{r}_{2} \bar{r}_{2}\right\rangle\left\langle\left\langle\bar{r}_{2}\right|\right.
\end{aligned}
$$

(Sketch of Kraus operator)

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2}\right|+\bar{r}_{2}\left|\bar{r}_{2}\right\rangle\left\langle\bar{r}_{2}\right|
\end{aligned}
$$

(Sketch of Kraus operator)

M. Namkung and Y. Kwon, Optimal sequential state discrimination between two mixed quantum states, Phys. Rev. A 96, 022318 (2017).

Extending problem to mixed states case

$$
\begin{aligned}
& \rho_{1}=r_{1}\left|r_{1}\right\rangle\left\langle r_{1}\right|+\bar{r}_{1}\left|\bar{r}_{1}\right\rangle\left\langle\bar{r}_{1}\right| \\
& \rho_{2}=r_{2}\left|r_{2}\right\rangle\left\langle r_{2}\right|+\bar{r}_{2}\left|\bar{r}_{2}\right\rangle\left\langle\bar{r}_{2}\right|
\end{aligned}
$$

(Sketch of Kraus operator)

M. Namkung and Y. Kwon, Optimal sequential state discrimination between two mixed quantum states,

Extending problem to mixed states case (result)

$\operatorname{maximize} \quad P_{S}^{\left(B_{1}, \cdots, B_{N}\right)}=q_{1}\left(r_{1} \prod_{l=1}^{N} \alpha_{1}^{(l)}+r_{1} \prod_{l=1}^{N} \bar{\alpha}_{1}^{(l)}\right)+q_{2}\left(r_{2} \prod_{l=1}^{N} \alpha_{2}^{(l)}+r_{2} \prod_{l=1}^{N} \bar{\alpha}_{2}^{(l)}\right)$
subject to $\left(1-\alpha_{1}^{(1)}\right)\left(1-\alpha_{2}^{(1)}\right)>\left|\left\langle r_{1} \mid r_{2}\right\rangle\right|^{2}$

$$
\begin{aligned}
& \left(1-\bar{\alpha}_{1}^{(1)}\right)\left(1-\bar{\alpha}_{2}^{(1)}\right)>\left|\left\langle\bar{r}_{1} \mid \bar{r}_{2}\right\rangle\right|^{2} \\
& \left(1-\bar{\alpha}_{1}^{(I)}\right)\left(1-\bar{\alpha}_{2}^{(I)}\right)>\left|\left\langle\bar{s}_{1}^{(I-1)} \mid \bar{s}_{2}^{(I-1)}\right\rangle\right|^{2} \\
& \left(1-\bar{\alpha}_{1}^{(N)}\right)\left(1-\bar{\alpha}_{2}^{(N)}\right)=\left|\left\langle\bar{s}_{1}^{(N-1)} \mid \bar{s}_{2}^{(N-1)}\right\rangle\right|^{2}
\end{aligned}
$$

Extending problem to mixed states case (result)

Extending problem to mixed states case (in case of $q_{1}=q_{2}, r_{1}=r_{2}=r, \bar{r}_{1}=\bar{r}_{2}=\bar{r}$)

$$
\text { Example 1. } r=0.6, \bar{r}=0.4, s=0.7, \bar{s}=0.0001, N=3
$$

$$
P_{s}^{\left(B_{1} \cdots, B_{N}\right) o p t}=0.294443356418367
$$

Example 2. $r=0.6, \bar{r}=0.4, s=0.7, \bar{s}=0.0001, N=4$

$$
P_{s}^{\left(B_{1} \cdots, B_{N}\right) o p t}=0.182986042905254
$$

Remark 1: Sequential state discrimination of two mixed states can be performed with large success probability.

Remark 2: Sequential state discrimination can applied to multiparty QKD, even if the number of receivers is too many.

Quantum reproducing

Alice

Bob 2 (optimal UD)

Bob 1 (optimal UD)

Quantum reproducing

Probabilistic Quantum Broadcasting

Probabilistic Quantum Broadcasting

Probabilistic Quantum Broadcasting

Optimal success probabilities

Example. $r=0.3, \bar{r}=0.7, s=0.5, \bar{s}=5 \times 10^{-8}, N \in\{1, \cdots, 7\}$
(probabilistic quantum broadcasting)

[^0]Application

HYU

Realistic QKD based on coherent states

G. Cariolaro, Quantum Communications (Springer, 2015).

Introduction: coherent state and operations

Definition. [R. J. Glauber]

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad n \text { : number of photons }
$$

Lemma 1. $\widehat{D}(\gamma)|\alpha\rangle=e^{\gamma \hat{a}-\gamma^{*} \hat{a}^{\dagger}}|\alpha\rangle \simeq|\alpha+\gamma\rangle$

Lemma 2. $|\sqrt{R} \alpha+\sqrt{1-R} \beta\rangle$

Introduction: coherent state and operations

Definition. [R. J. Glauber]

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad n \text { : number of photons }
$$

Lemma 1. $\widehat{D}(\gamma)|\alpha\rangle=e^{\gamma \hat{a}-\gamma^{*} \hat{a}^{\dagger}}|\alpha\rangle \simeq|\alpha+\gamma\rangle$

Lemma 2. $|\sqrt{R} \alpha+\sqrt{1-R} \beta\rangle$

Requirement for implementing sequential state discrimination

K. Banaszek, Optimal receiver for quantum cryptography with two coherent states, Phys. Lett. A 253, 12 (1999).

Banaszek model

$\hat{\Pi}_{1} \hat{\Pi}_{2}$	off	on
\%	inconclusive	correct
¢	error (forbidden)	(forbidden)

K. Banaszek, Optimal receiver for quantum cryptography with two coherent states, Phys. Lett. A 253, 12 (1999).

Banaszek model

Banaszek model

K. Banaszek, Optimal receiver for quantum cryptography with two coherent states, Phys. Lett. A 253, 12 (1999).

Huttner-like model

auxiliary light

Huttner-like model

Huttner-like model

Huttner-like model

Implementing sequential state discrimination

M. Namkung and Y. Kwon, Sequential state discrimination of coherent states, Scientific Reports 8, 16915 (2018).

M. Namkung and Y. Kwon, Sequential state discrimination of coherent states, Scientific Reports 8, 16915 (2018).

Bob N's receiver

M. Namkung and Y. Kwon, Sequential state discrimination of coherent states, Scientific Reports 8, 16915 (2018).

Optimal success probability

(three receivers)

(four receivers)

Noisy channel in Banaszek model

Noisy channel in Banaszek model

Noisy channel in Banaszek model

Example. $\left|\beta_{1}\right\rangle=|\alpha\rangle,\left|\beta_{2}\right\rangle=|-\alpha\rangle$

In view of noisy channel: Photon loss noise can be compensated, but success probability decreases.

In view of eavesdropping
Eavesdropping decreases success probability.

Noisy channel in Huttner-like model

Photon loss(eavesdropping) on Alice's coherent state only

Photon loss(eavesdropping) on Alice's coherent state and auxiliary light

Photon loss(eavesdropping) on auxiliary light only

Noisy channel in Huttner-like model

Photon loss(eavesdropping) on Alice's coherent state only

In view of noisy channel: Compensation decreases large amount of success probability.
In view of eavesdropping:
Because of decreasing, receivers notice eavesdropping.

Noisy channel in Huttner-like model

Photon loss(eavesdropping) on auxiliary light only

In view of noisy channel:
Compensation does not decrease success probability.
In view of eavesdropping:
Eavesdropper cannot obtain any information.

Optimal success probabilities

According to this graph, sequential state discrimination outperforms quantum probabilistic cloning strategy

- Part I: Theory
- We express sequential state discrimination for N receivers in mathematical optimization problem.
- Sequential state discrimination of two pure states can be applied to multiparty QKD, when the number of receivers is not too many.
- Sequential state discrimination of two mixed states can be applied to multiparty QKD, even if the number of receivers is too many.
- Optimal success probability of mixed states sequential state discrimination excesses that of quantum reproducing and quantum probabilistic broadcasting strategy. This means that sequential state discrimination is more suitable for multiparty QKD than other two strategies.
- Part II : Application
- We propose the method to implement sequential state discrimination of two coherent states using linear optics.
Probabilistic cloning cannot be performed using linear optics except for weak coherent states. Therefore, this strategy is difficult to be implemented technically.

Optimal success probability of sequential state discrimination excesses that of probabilistic cloning strategy.

These two facts mean that sequential state discrimination of coherent states is more suitable for realistic multiparty QKD than probabilistic cloning strategy. Especially, Huttner-like model confirms security in realistic situation.

This talk is based on following works and recent results prepared in submission:

- M. Namkung and Y. Kwon, Phys. Rev. A 96, 022318 (2017).
- M. Namkung and Y. Kwon, Scientific Reports 8, 6515 (2018).
- M. Namkung and Y. Kwon, Scientific Reports 8, 16915 (2018).

We plan to investigate sequential state discrimination of N quantum states. In case of three pure states, we may exploit following reference:

- D. Ha and Y. Kwon, Phys. Rev. A 91, 062312 (2015).

Thank you for attention! 강사합니다!

[^0]: Remark : Sequential state discrimination outperform quantum reproducing and quantum broadcasting strategies.

