Subspaces of maximal dimension with bounded Schmidt rank

大坂博幸（立命館大学）

（Hiroyuki Osaka（Ritsumeikan University））
joint work with Priyabrata Bag，Santanu Dey，and Masaru Nagisa

May 20， 2019
Seoul National University
This is partially supported by the JSPA grant for Scientific Research No．17K05285

1 Introduction
2 The order-n minors of certain $(n+k) \times n$ matrices
3 Subspaces of Maximal dimension with bounded Schmidt rank
4 Concluding remark
5 References

Introduction (Schmidt rank)

Let \mathcal{H} denote the bipartite Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$. By Schmidt decomposition theorem, any pure state $|\psi\rangle \in \mathcal{H}$ can be written as

$$
\begin{equation*}
|\psi\rangle=\sum_{j=1}^{k} \alpha_{j}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle \tag{1}
\end{equation*}
$$

for some $k \leq \min \{m, n\}$, where $\left\{\left|u_{j}\right\rangle: 1 \leq j \leq k\right\}$ and $\left\{\left|v_{j}\right\rangle: 1 \leq j \leq k\right\}$ are orthonormal sets in \mathbf{C}^{m} and \mathbf{C}^{n} respectively, and α_{j} 's are nonnegative real numbers satisfying $\sum_{j} \alpha_{j}^{2}=1$.

Introduction (Schmidt rank)

Let \mathcal{H} denote the bipartite Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$. By Schmidt decomposition theorem, any pure state $|\psi\rangle \in \mathcal{H}$ can be written as

$$
\begin{equation*}
|\psi\rangle=\sum_{j=1}^{k} \alpha_{j}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle \tag{1}
\end{equation*}
$$

for some $k \leq \min \{m, n\}$, where $\left\{\left|u_{j}\right\rangle: 1 \leq j \leq k\right\}$ and $\left\{\left|v_{j}\right\rangle: 1 \leq j \leq k\right\}$ are orthonormal sets in \mathbf{C}^{m} and \mathbf{C}^{n} respectively, and α_{j} 's are nonnegative real numbers satisfying $\sum_{j} \alpha_{j}^{2}=1$.

Definition

In the Schmidt decomposition (1) of a pure bipartite state $|\psi\rangle$ the minimum number of terms required in the summation is known as the Schmidt rank of $|\psi\rangle$, and it is denoted by $S R(|\psi\rangle)$.

In [T. Cubitt-A. Montanaro-A. Winter, 2008]
it was proved that for a bipartite system $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, the dimension of any subspace of Schmidt rank greater than or equal to k is bounded above by $(m-k+1)(n-k+1)$.

In [T. Cubitt-A. Montanaro-A. Winter, 2008]
it was proved that for a bipartite system $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, the dimension of any subspace of Schmidt rank greater than or equal to k is bounded above by $(m-k+1)(n-k+1)$.
We construct subspaces \mathcal{T} of dimension $(m-k+1)(n-k+1)$ of bipartite finite dimensional Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ such that any vector in \mathcal{T} has Schmidt rank greater than or equal to k where $k=2,3$ and 4 .
Unlike [T. Cubitt-A. Montanaro-A.Winter, 2008], the subspaces \mathcal{T} of $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ that we construct also have bases consisting of elements of Schmidt rank k.

In [T. Cubitt-A. Montanaro-A. Winter, 2008]
it was proved that for a bipartite system $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, the dimension of any subspace of Schmidt rank greater than or equal to k is bounded above by $(m-k+1)(n-k+1)$.
We construct subspaces \mathcal{T} of dimension $(m-k+1)(n-k+1)$ of bipartite finite dimensional Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ such that any vector in \mathcal{T} has Schmidt rank greater than or equal to k where $k=2,3$ and 4 .
Unlike [T. Cubitt-A. Montanaro-A.Winter, 2008], the subspaces \mathcal{T} of $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ that we construct also have bases consisting of elements of Schmidt rank k.
Note that For the case when a subspace of $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ is of Schmidt rank greater than or equal to 2 (that is, the subspace does not contain any product vector), the maximum dimension of that subspace is $(m-1)(n-1)$, and this was first proved in $[\mathrm{K} . \mathrm{R}$. Parthasarathy, 2004], and [N. R. Wallach, 2002] (cf. [B. V. R. Bhat, 2006]).

Introduction (Schmidt number)

In the bipartite Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, for any $1 \leq r \leq \min \{m, n\}$, there is at least some state $|\psi\rangle$ with $S R(|\psi\rangle)=r$. Any state ρ on a finite dimensional Hilbert space \mathcal{H} can be written as

$$
\begin{equation*}
\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|, \tag{2}
\end{equation*}
$$

where $\left|\psi_{j}\right\rangle$'s are pure states in \mathcal{H} and $\left\{p_{j}\right\}$ forms a probability distribution. The following notion was introduced in [B. M. Terhal and P. Horodecki, 2000].

Introduction (Schmidt number)

In the bipartite Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, for any $1 \leq r \leq \min \{m, n\}$, there is at least some state $|\psi\rangle$ with $S R(|\psi\rangle)=r$. Any state ρ on a finite dimensional Hilbert space \mathcal{H} can be written as

$$
\begin{equation*}
\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|, \tag{2}
\end{equation*}
$$

where $\left|\psi_{j}\right\rangle$'s are pure states in \mathcal{H} and $\left\{p_{j}\right\}$ forms a probability distribution. The following notion was introduced in [B. M. Terhal and P. Horodecki, 2000].

Definition

The Schmidt number of a state ρ on a bipartite finite dimensional Hilbert space \mathcal{H} is defined to be the least natural number k such that ρ has a decomposition of the form given in (2) with $S R\left(\left|\psi_{j}\right\rangle\right) \leq k$ for all j. The Schmidt number of ρ is denoted by $S N(\rho)$.

Schmidt number of a state on a bipartite Hilbert space is a measure of entanglement. Entanglement is the key property of quantum systems which is responsible for the higher efficiency of quantum computation and tasks like teleportation, super-dense coding, etc (cf. [R., P., M., K., Horodecki, 2009]). The following proposition establishes an important relation between Schmidt number of a state and the lower bound of Schmidt rank of any vector in the supporting subspace of the state. It should be well known.

Schmidt number of a state on a bipartite Hilbert space is a measure of entanglement. Entanglement is the key property of quantum systems which is responsible for the higher efficiency of quantum computation and tasks like teleportation, super-dense coding, etc (cf. [R., P., M., K., Horodecki, 2009]). The following proposition establishes an important relation between Schmidt number of a state and the lower bound of Schmidt rank of any vector in the supporting subspace of the state. It should be well known.

Proposition

Let \mathcal{S} be a subspace of $\mathcal{H}=\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ which does not contain any vector of Schmidt rank lesser or equal to k. Then any state ρ supported on \mathcal{S} has Schmidt number at least $k+1$.

Idea

Let $\phi: \mathbf{C}^{m} \otimes \mathbf{C}^{n} \rightarrow M_{m \times n}(\mathbf{C})$ be defined by for each
$\mathbf{C}^{m} \otimes \mathbf{C}^{n} \ni|\eta\rangle=\sum_{i, j} c_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle, \phi(|\eta\rangle)=\left[c_{i j}\right]$. Then $|\eta\rangle$ has Schmidt rank at least r if and only if the corresponding matrix [$c_{i j}$] is of rank at least r.
Usiing this correspondence, we find a basis of $\left\{\left|\eta_{i}\right\rangle\right\}_{i=1}^{d}$ such that all non-zero linear combination C of $\left\{\phi\left(\left|\eta_{i}\right\rangle\right)\right\}_{i=1}^{d}$ has at least rank 4.

Idea

Let $\phi: \mathbf{C}^{m} \otimes \mathbf{C}^{n} \rightarrow M_{m \times n}(\mathbf{C})$ be defined by for each
$\mathbf{C}^{m} \otimes \mathbf{C}^{n} \ni|\eta\rangle=\sum_{i, j} c_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle, \phi(|\eta\rangle)=\left[c_{i j}\right]$. Then $|\eta\rangle$ has Schmidt rank at least r if and only if the corresponding matrix [$c_{i j}$] is of rank at least r.
Usiing this correspondence, we find a basis of $\left\{\left|\eta_{i}\right\rangle\right\}_{i=1}^{d}$ such that all non-zero linear combination C of $\left\{\phi\left(\left|\eta_{i}\right\rangle\right)\right\}_{i=1}^{d}$ has at least rank 4.

[Example]

$$
\begin{aligned}
& \left|e_{0}\right\rangle \otimes\left|f_{3}\right\rangle-a\left|e_{1}\right\rangle \otimes\left|f_{2}\right\rangle+a\left|e_{2}\right\rangle \otimes\left|f_{1}\right\rangle-\left|e_{3}\right\rangle \otimes\left|f_{0}\right\rangle \\
& \xrightarrow{\phi} \\
& \left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & -a & \cdot & \cdot \\
\cdot & a & \cdot & \cdot & \cdot \\
-1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right.
\end{aligned}
$$

The order- n minors of $(n+k) \times n$ matrixes

For any $n \in \mathbf{N}$ and positive numbers a and b in \mathbf{R}, set $(n+1) \times n$ matrix

$$
E_{n}(a, b)=\left(\begin{array}{ccccccc}
-a & b & 0 & 0 & 0 & \cdots & 0 \tag{3}\\
a & -a & b & 0 & 0 & \cdots & 0 \\
-b & a & -a & b & 0 & \cdots & 0 \\
0 & -b & a & -a & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & b \\
0 & \cdots & \cdots & 0 & -b & a & -a \\
0 & \cdots & \cdots & \cdots & 0 & -b & a
\end{array}\right)
$$

For $1 \leq k \leq n+1$ let $E_{n}^{k}(a, b)$ be a matrix which is obtained by deleting the k-th row of $E_{n}(a, b)$.

We would like to determine when $E_{n}^{k}(a, b)$ is invertible for any $1 \leq k \leq n+1$.

We would like to determine when $E_{n}^{k}(a, b)$ is invertible for any $1 \leq k \leq n+1$.
For any $n \in \mathbf{N}$ and positive numbers a and b in \mathbf{R} set the $n \times n$ matrix

$$
D_{n}(a, b)=\left(\begin{array}{ccccccc}
-a & b & 0 & 0 & 0 & \cdots & 0 \\
a & -a & b & 0 & 0 & \cdots & 0 \\
-b & a & -a & b & 0 & \cdots & 0 \\
0 & -b & a & -a & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & b \\
0 & \cdots & \cdots & 0 & -b & a & -a
\end{array}\right) .
$$

We also define the $n \times n$ matrix $F_{n}(a, b)$ as follows:

$$
F_{n}(a, b)=\left(\begin{array}{cccccccc}
a & -a & b & 0 & 0 & 0 & \cdots & 0 \\
-b & a & -a & b & 0 & 0 & \cdots & 0 \\
0 & -b & a & -a & b & 0 & \cdots & 0 \\
0 & 0 & -b & a & -a & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & b \\
0 & \cdots & \cdots & \cdots & 0 & -b & a & -a \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -b & a
\end{array}\right)=D_{n}(-a,-b)^{t} .
$$

We also define the $n \times n$ matrix $F_{n}(a, b)$ as follows:

$$
F_{n}(a, b)=\left(\begin{array}{cccccccc}
a & -a & b & 0 & 0 & 0 & \cdots & 0 \\
-b & a & -a & b & 0 & 0 & \cdots & 0 \\
0 & -b & a & -a & b & 0 & \cdots & 0 \\
0 & 0 & -b & a & -a & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & b \\
0 & \cdots & \cdots & \cdots & 0 & -b & a & -a \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -b & a
\end{array}\right)=D_{n}(-a,-b)^{t} .
$$

Proposition

For $1 \leq k \leq n+1$ we have

$$
\begin{aligned}
\left|E_{n}^{k}(a, b)\right| & =\left|D_{k-1}(a, b)\right|\left|F_{n-(k-1)}(a, b)\right|+\left|D_{k-2}(a, b)\right|\left|F_{n-k}(a, b)\right| b^{2} \\
& =(-1)^{n-k+1}\left(\left|D_{k-1}(a, b)\right|\left|D_{n-k+1}(a, b)\right|\right. \\
& \left.-\left|D_{k-2}(a, b)\right|\left|D_{n-k}(a, b)\right| b^{2}\right) .
\end{aligned}
$$

If $b=0$ and $1 \leq k \leq n+1$,

$$
\left|E_{n}^{k}(a, b)\right|=(-1)^{n-k+1}\left|D_{k-1}(a, 0)\right|\left|D_{n-k+1}(a, 0)\right|=(-1)^{k-1} a^{n}
$$

If $b \neq 0$, since $\left|E_{n}^{k}(a, b)\right|=b^{k}\left|E_{n}^{k}\left(\frac{a}{b}, 1\right)\right|$, we may assume that $b=1$.

If $b=0$ and $1 \leq k \leq n+1$,

$$
\left|E_{n}^{k}(a, b)\right|=(-1)^{n-k+1}\left|D_{k-1}(a, 0)\right|\left|D_{n-k+1}(a, 0)\right|=(-1)^{k-1} a^{n}
$$

If $b \neq 0$, since $\left|E_{n}^{k}(a, b)\right|=b^{k}\left|E_{n}^{k}\left(\frac{a}{b}, 1\right)\right|$, we may assume that $b=1$.

Theorem

For $n \in \mathbf{N} \cup\{-1,0\}$ and a positive number $a \in \mathbf{R}$, let $d_{-1}=0$, $d_{0}=1$ and $d_{n}=\left|D_{n}(a, 1)\right|$. Then for $1 \leq k \leq n+1$ we have

$$
\begin{gathered}
\left|E_{n}^{k}(a, 1)\right|=(-1)^{n-k+1}\left(d_{k-1} d_{n-k+1}-d_{k-2} d_{n-k}\right) \\
\quad d_{k}=\left.\frac{1}{k!} \frac{d^{k}}{d x^{k}}\left(\frac{1}{1+a x+a x^{2}+x^{3}}\right)\right|_{x=0}
\end{gathered}
$$

Moreover, if $x^{3}+a x^{2}+a x+1=0$ has 3 different solutions α, β, γ, then we have for $1 \leq k$

$$
d_{k}=\frac{1}{\alpha^{k+1}(\alpha-\beta)(\gamma-\alpha)}+\frac{1}{\beta^{k+1}(\alpha-\beta)(\beta-\gamma)}+\frac{1}{\gamma^{k+1}(\gamma-\alpha)(\beta-\gamma)}
$$

Examples

Example

Set $a=3$ and $b=1$. Then we have

$$
d_{n}=\left|D_{n}(3,1)\right|=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}}(1+x)^{-3}\right|_{x=0}=\frac{(-1)^{n}}{2}(n+1)(n+2)
$$

and

$$
\left|E_{n}^{k}(3,1)\right|=\frac{(-1)^{k-1}}{2} k(n+2)(n-k+2)
$$

Note that if $\left|E_{n}^{k}(3,1)\right|=0$, then $k=n+2$. Therefore, for any $1 \leq k \leq n+1$ we have $\left|E_{n}^{k}(3,1)\right| \neq 0$, that is, all order- n minors of $E_{n}(3,1)$ are non-zero.

Example

Set $n=10$ and $a=2$. Then $\left|E_{10}^{5}(2,1)\right|=0$.
Indeed, the equation $x^{3}+2 x^{2}+2 x+1=(x+1)\left(x^{2}+x+1\right)=0$
has solutions $-1, \omega, \omega^{2}$, where $\omega=\frac{-1+\sqrt{3} \iota}{2}$. Then we have

$$
\begin{aligned}
d_{k} & =\frac{1}{(-1)^{k+1}(-1-\omega)\left(\omega^{2}+1\right)}+\frac{1}{\omega^{k+1}(-1-\omega)\left(\omega-\omega^{2}\right)} \\
& +\frac{1}{\omega^{2(k+1)}\left(\omega^{2}+1\right)\left(\omega-\omega^{2}\right)} \\
& =(-1)^{k}-\frac{\omega^{k+2}\left(1-\omega^{k}\right)}{1-\omega} .
\end{aligned}
$$

Since $d_{4}=d_{5}=0$, we have $\left|E_{10}^{5}(2,1)\right|=d_{4} d_{6}-d_{3} d_{5}=0$.

For $a \in \mathbf{R}$ with $a>5$ and $1 \leq k \leq n+1$ the matrix $E_{n}^{k}(a, 1)$ is invertible, that is, all order- n minors of $E_{n}(a, 1)$ are non-zero.

Theorem

For $a \in \mathbf{R}$ with $a>5$ and $1 \leq k \leq n+1$ the matrix $E_{n}^{k}(a, 1)$ is invertible, that is, all order- n minors of $E_{n}(a, 1)$ are non-zero.

Idea is as follows: Suppose that $E_{n}^{k} \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \in \mathbf{C}^{n}$. If $x_{1}=0$ or $x_{n}=0$, it is easy to show that $\mathbf{x}=\mathbf{0}$. Hence we may assume that $\mathbf{x} \neq \mathbf{0}$.
Let $a(i), b(i), c(i), d(i) \in \mathbf{C}$ with $|a(i)|=|d(i)|=1$ and $|b(i)|=|c(i)|=\alpha>5(i=1,2, \ldots, k-1)$. Since $x_{1} \neq 0$ and $c(1) x_{1}+d(1) x_{2}=0$ $b(2) x_{1}+c(2) x_{2}+d(2) x_{3}=0$

$$
a(3) x_{1}+b(3) x_{2}+c(3) x_{3}+d(3) x_{4}=0
$$

$$
a(4) x_{2}+b(4) x_{3}+c(4) x_{4}+d(4) x_{5}=0
$$

$$
a(k-1) x_{k-3}+b(k-1) x_{k-2}+c(k-1) x_{k-1}+d(k-1) x_{k}=0
$$

then $\left|x_{I+1}\right| \geq(\alpha-2)\left|x_{l}\right| \quad(I=1,2, \ldots, k-1)$, and $\left|x_{k}\right|>\left|x_{k-1}\right|$.
Conversely, since $x_{n} \neq 0$, we have $\left|x_{k-1}\right| \geq(\alpha-2)\left|x_{k}\right|>\left|x_{k}\right|$.

Subspaces of maximal dimension with bounded Schmidt rank

For $n \in \mathbf{N}$ and a number $a \in \mathbf{R}$, we consider the $(n+3) \times n$ matrix $B_{n}(a, 1)$ as follows:

$$
B_{n}(a, 1)=\left(\begin{array}{c}
b_{1} \\
E_{n}(a, 1) \\
b_{n+3}
\end{array}\right)
$$

where $b_{1}=(1,0, \ldots, 0), b_{n+3}=(0, \ldots, 0,-1)$.

Proposition

For $1 \leq i<j<k \leq n+3$ and $a=3$ or $a>5$, let $B_{n}(a, 1)^{i, j, k}$ be a matrix which is obtained by deleting the i, j, k-th rows of $B_{n}(a, 1)$. Then $\left|B_{n}(a, 1)^{i, j, k}\right| \neq 0$.

The following obsrvation is used to get our main results.

Corollary

For $a=3$ or $a>5$, the columns of $B_{n}(a, 1)$ are linearly independent such that any linear combination of these columns has at least 4 non-zero entries.

The following obsrvation is used to get our main results.

Corollary

For $a=3$ or $a>5$, the columns of $B_{n}(a, 1)$ are linearly independent such that any linear combination of these columns has at least 4 non-zero entries.

Theorem

Let m and n be natural numbers such that $4 \leq \min \{m, n\}$. Let $N=n+m-2$, and $\left\{\left|e_{i}\right\rangle\right\}_{i=0}^{m-1}$ (resp. $\left\{\left|f_{j}\right\rangle\right\}_{j=0}^{n-1}$) be the canonical basis for $\mathbf{C}^{m}\left(\right.$ resp. $\left.\mathbf{C}^{n}\right)$. For $3 \leq d \leq N-3$ define

$$
\mathcal{S}^{(d)}=\operatorname{span}\left\{\left|e_{i-2}\right\rangle \otimes\left|f_{j+1}\right\rangle-a\left|e_{i-1}\right\rangle \otimes\left|f_{j}\right\rangle+a\left|e_{i}\right\rangle \otimes\left|f_{j-1}\right\rangle-\left|e_{i+1}\right\rangle \otimes\left|f_{j-2}\right\rangle:\right.
$$

$$
2 \leq i \leq m-2,2 \leq j \leq n-2, i+j=d+1\}
$$

$$
\mathcal{S}^{(0)}=\mathcal{S}^{(1)}=\mathcal{S}^{(2)}=\mathcal{S}^{(N-2)}=\mathcal{S}^{(N-1)}=\mathcal{S}^{(N)}=\{0\}
$$

and $\mathcal{S}=\bigoplus_{d=0}^{N} \mathcal{S}^{(d)}$. If $a=3$ or $a>5$, then \mathcal{S} does not contain any vector of Schmidt rank ≤ 3 and $\operatorname{dim} \mathcal{S}=(m-3)(n-3)$.

Scketch of the proof:
Let $\phi: \mathbf{C}^{m} \otimes \mathbf{C}^{n} \rightarrow M_{m \times n}(\mathbf{C})$ be defined by for each
$\mathbf{C}^{m} \otimes \mathbf{C}^{n} \ni|\eta\rangle=\sum_{i, j} c_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle, \phi(|\eta\rangle)=\left[c_{i j}\right]$. Then $|\eta\rangle$ has
Schmidt rank at least r if and only if the corresponding matrix [$c_{i j}$] is of rank at least r.

Scketch of the proof: Let $\phi: \mathbf{C}^{m} \otimes \mathbf{C}^{n} \rightarrow M_{m \times n}(\mathbf{C})$ be defined by for each $\mathbf{C}^{m} \otimes \mathbf{C}^{n} \ni|\eta\rangle=\sum_{i, j} c_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle, \phi(|\eta\rangle)=\left[c_{i j}\right]$. Then $|\eta\rangle$ has Schmidt rank at least r if and only if the corresponding matrix [$c_{i j}$] is of rank at least r.
Then we have the conclusion from the observation in $B_{n}(a, 1)$ and the following calculation:

$$
\begin{aligned}
& \left|e_{0}\right\rangle \otimes\left|f_{3}\right\rangle-a\left|e_{1}\right\rangle \otimes\left|f_{2}\right\rangle+a\left|e_{2}\right\rangle \otimes\left|f_{1}\right\rangle-\left|e_{3}\right\rangle \otimes\left|f_{0}\right\rangle \\
& \xrightarrow{\phi} \\
& \left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & -a & \cdot & \cdot \\
\cdot & a & \cdot & \cdot & \cdot \\
-1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right.
\end{aligned}
$$

Remark

From the above theorem it follows that for $a=3$ or $a>5$, all the elements of the basis

$$
\begin{gathered}
B=\bigcup_{d=3}^{N-3}\left\{\left|e_{i-2}\right\rangle \otimes\left|f_{j+1}\right\rangle-a\left|e_{i-1}\right\rangle \otimes\left|f_{j}\right\rangle+a\left|e_{i}\right\rangle \otimes\left|f_{j-1}\right\rangle-\left|e_{i+1}\right\rangle \otimes\left|f_{j-2}\right\rangle:\right. \\
2 \leq i \leq m-2,2 \leq j \leq n-2, i+j=d+1\}
\end{gathered}
$$

of \mathcal{S} have Schmidt rank 4.

Remark

From the above theorem it follows that for $a=3$ or $a>5$, all the elements of the basis

$$
\begin{gathered}
B=\bigcup_{d=3}^{N-3}\left\{\left|e_{i-2}\right\rangle \otimes\left|f_{j+1}\right\rangle-a\left|e_{i-1}\right\rangle \otimes\left|f_{j}\right\rangle+a\left|e_{i}\right\rangle \otimes\left|f_{j-1}\right\rangle-\left|e_{i+1}\right\rangle \otimes\left|f_{j-2}\right\rangle:\right. \\
2 \leq i \leq m-2,2 \leq j \leq n-2, i+j=d+1\}
\end{gathered}
$$

of \mathcal{S} have Schmidt rank 4.

Remark: Let m and n be natural numbers such that $4 \leq \min \{m, n\}$. Let $N=n+m-2$, and $\left\{\left|e_{i}\right\rangle\right\}_{i=0}^{m-1}$ (resp.
$\left.\left\{\left|f_{j}\right\rangle\right\}_{j=0}^{n-1}\right)$ be the canonical basis for \mathbf{C}^{m} (resp. \mathbf{C}^{n}) and set
$g(i, j)=\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle+a\left|e_{i-1}\right\rangle \otimes\left|f_{j+1}\right\rangle$. Consider
$\mathcal{S}=\operatorname{span}\{g(i, j): 1 \leq i \leq m-1,0 \leq j \leq n-2\}$,
$\mathcal{T}=\operatorname{span}\left\{g(i, j)+\frac{1}{a} g(i-1, j+1): 2 \leq i \leq m-1,0 \leq j \leq n-3\right\}$,
$\mathcal{U}=\operatorname{span}\left\{\left(g(i, j)+\frac{1}{a} g(i-1, j+1)\right)+\left(g(i-1, j+1)+\frac{1}{a} g(i-2, j+2)\right):\right.$

$$
3 \leq i \leq m-1,0 \leq j \leq n-4\} .
$$

When $a>0$ and $a+\frac{1}{a}>4$, we have
$1 \mathcal{U} \subset \mathcal{T} \subset \mathcal{S}$,
2 Any element in \mathcal{S} has Schmidt rank ≥ 2, any generator in \mathcal{S} has Schmidt rank 2, and $\operatorname{dim} \mathcal{S}=(m-1)(n-1)$,
3 Any element in \mathcal{T} has Schmidt rank ≥ 3, any generator in \mathcal{T} has Schmidt rank 3, and $\operatorname{dim} \mathcal{T}=(m-2)(n-2)$,
4 Any element in \mathcal{U} has Schmidt rank ≥ 4, any generator in \mathcal{U} has Schmidt rank 4, and $\operatorname{dim} \mathcal{U}=(m-3)(n-3)$.

Concluding remark

Question

Are there k-positive maps $\phi: M_{m}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ with $1<k<m$ which are not decomposable?

Concluding remark

Question

Are there k-positive maps $\phi: M_{m}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ with $1<k<m$ which are not decomposable?

Theorem (Terhal 2001)

Let S be a product basis $\left\{\left|\alpha_{i}\right\rangle \otimes\left|\beta_{i}\right\rangle\right\}_{i=1}^{|S|}$ in $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ and suppose that the complementary subspace H_{S}^{\perp} of a proper subspace H_{S} generated by S in $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$, contains no product states. Then $\rho=\frac{1}{n m-|S|}\left(i d-\sum_{i}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right| \otimes\left|\beta_{i}\right\rangle\left\langle\beta_{i}\right|\right)$ is entangled.

Using this observation Terhal constructed a family of indecomposable maps. We hope that after modifying our subspaces we could construct 2-positive map : $M_{m}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ with $\max \{n, m\}<10$ which is not decomposable. Note that when $\min \{n, m\} \geq 10$ there are such examples by [Huber, Lami, Lancien, and Müller-Hermes, 2018].

References

1 B. V. R. Bhat, Int. J. Quantum Inform. 04 (2006) 325.
2 T. Cubitt, A. Montanaro and A. Winter, J. Math. Phys. 49 (2008), p. 022107.

3 R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81 (2009) 865.
4 M. Huber, L. Lami, C. Lancien, and A. Müller-Hermes, High-dimensional Entanglement in states with positive partial transposition, arXiv:1802.049.
5 K. R. Parthasarathy, Proc. Math. Sciences 114 (2004) 365.
б B. M. Terhal, A family of indecomposable positive linear maps based on entangled quantum states, LAA 323 (2001), 61-73.
7 B. M. Terhal and P. Horodecki, Phys. Rev. A 61 (2000) p. 040301.

8 N. R. Wallach, An unentangled Gleason's theorem, in Contemp. Math., 2002.

Thank you for your attention !!

