Evaluating the robustness of \mathbf{k}-coherence and k-entanglement

Yiu-Tung Poon
Iowa State University
Peng Cheng Laboratory

MACQIT 2019
Seoul National University, Korea
May 20-24, 2019

Joint work with:
Nathaniel Johnston ,Chi-Kwong Li, Sarah Plosker and Bartosz Regula

Outline

Outline

(1) Notations

Outline

Outline

(1) Notations
(2) Robustness of k-coherence

Outline

Outline

(1) Notations
(2) Robustness of k-coherence
(3) Robustness of k-coherence for pure states

Outline

Outline

(1) Notations
(2) Robustness of k-coherence
(3) Robustness of k-coherence for pure states
(9) Proof using semidefinite programming duality

Outline

Outline

(1) Notations
(2) Robustness of k-coherence
(3) Robustness of k-coherence for pure states
(9) Proof using semidefinite programming duality
(5) Application to entanglement measures

Outline

Outline

(1) Notations
(2) Robustness of k-coherence
(3) Robustness of k-coherence for pure states
(9) Proof using semidefinite programming duality
(5) Application to entanglement measures
(0) Conclusion

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) x denotes an unnormalized complex vector,

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.
(4) $A \succeq 0$ means that the matrix A is positive semidefinite.

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.
(9) $A \succeq 0$ means that the matrix A is positive semidefinite.
(5) $|v\rangle$ is k-incoherent if it has k or fewer non-zero entries, when written in the standard computational basis $\{|1\rangle, \ldots,|n\rangle\}$ of \mathbb{C}^{n}.

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.
(9) $A \succeq 0$ means that the matrix A is positive semidefinite.
(5) $|v\rangle$ is k-incoherent if it has k or fewer non-zero entries, when written in the standard computational basis $\{|1\rangle, \ldots,|n\rangle\}$ of \mathbb{C}^{n}.
(1) A density matrix is k-incoherent if it is in the set

$$
\mathcal{I}_{k} \stackrel{\text { def }}{=}\left\{\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|: p_{i} \geq 0, \sum_{i} p_{i}=1,\left|v_{i}\right\rangle \text { is } k \text {-incoherent } \forall i\right\}
$$

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.
(9) $A \succeq 0$ means that the matrix A is positive semidefinite.
(5) $|v\rangle$ is k-incoherent if it has k or fewer non-zero entries, when written in the standard computational basis $\{|1\rangle, \ldots,|n\rangle\}$ of \mathbb{C}^{n}.
(1) A density matrix is k-incoherent if it is in the set

$$
\mathcal{I}_{k} \stackrel{\text { def }}{=}\left\{\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|: p_{i} \geq 0, \sum_{i} p_{i}=1,\left|v_{i}\right\rangle \text { is } k \text {-incoherent } \forall i\right\} .
$$

(1) Write $\mathcal{I}=\mathcal{I}_{1}$, the set of diagonal density matrices.

Notations

(1) $|v\rangle$ denotes unit vectors (pure states) in \mathbb{C}^{n}.
(2) $|v\rangle\langle v|$ denotes pure state density matrices, and \mathcal{D}_{n} denotes the set of $n \times n$ density matrices (pure or mixed).
(3) \mathbf{x} denotes an unnormalized complex vector, $\mathbf{1}=(1, \ldots, 1)^{t}$ the all-ones vector.
(9) $A \succeq 0$ means that the matrix A is positive semidefinite.
(5) $|v\rangle$ is k-incoherent if it has k or fewer non-zero entries, when written in the standard computational basis $\{|1\rangle, \ldots,|n\rangle\}$ of \mathbb{C}^{n}.
(0) A density matrix is k-incoherent if it is in the set

$$
\mathcal{I}_{k} \stackrel{\text { def }}{=}\left\{\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|: p_{i} \geq 0, \sum_{i} p_{i}=1,\left|v_{i}\right\rangle \text { is } k \text {-incoherent } \forall i\right\} .
$$

(1) Write $\mathcal{I}=\mathcal{I}_{1}$, the set of diagonal density matrices. Note that $\mathcal{I}_{1} \subsetneq \mathcal{I}_{2} \subsetneq \cdots \mathcal{I}_{k} \subsetneq \mathcal{I}_{k+1} \subsetneq \cdots \subsetneq \mathcal{I}_{n}=\mathcal{D}_{n}$.

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\text { (standard) } \quad R_{k}^{s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}
$$

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\begin{array}{ll}
\text { (standard) } & R_{k}^{s}(\rho)
\end{array} \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}, ~ 子 \quad R_{k}^{g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0: \frac{\rho+s \tau}{1+s} \in \mathcal{I}_{k}\right\} . ~ \$ ~(\text { generalized) } .
$$

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\begin{aligned}
& \text { (standard) } \quad R_{k}^{s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}, \\
& \text { (generalized) } R_{k}^{g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0: \frac{\rho+s \tau}{1+s} \in \mathcal{I}_{k}\right\} .
\end{aligned}
$$

Clearly, $R_{k}^{s}(\rho) \geq R_{k}^{g}(\rho)$.

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\begin{aligned}
& \text { (standard) } \quad R_{k}^{s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}, \\
& \text { (generalized) } R_{k}^{g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0: \frac{\rho+s \tau}{1+s} \in \mathcal{I}_{k}\right\} .
\end{aligned}
$$

Clearly, $R_{k}^{s}(\rho) \geq R_{k}^{g}(\rho)$. In general, $R_{k}^{s}(\rho) \neq R_{k}^{g}(\rho)$ for $\rho \in \mathcal{D}_{n}$.

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\begin{aligned}
& \text { (standard) } \quad R_{k}^{s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}, \\
& \text { (generalized) } R_{k}^{g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0: \frac{\rho+s \tau}{1+s} \in \mathcal{I}_{k}\right\} .
\end{aligned}
$$

Clearly, $R_{k}^{s}(\rho) \geq R_{k}^{g}(\rho)$. In general, $R_{k}^{s}(\rho) \neq R_{k}^{g}(\rho)$ for $\rho \in \mathcal{D}_{n}$.
3) $R_{1}^{g}(\rho)=R(\rho)$

Robustness of k-coherence

1) The robustness of coherence of a given state $\rho \in \mathcal{D}_{n}$

$$
R(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \tau}{1+s} \in \mathcal{I}\right.\right\}
$$

2) For $k \in\{2,3, \ldots, n\}$, one can define two different robustnesses of k-coherence:

$$
\begin{aligned}
& \text { (standard) } \quad R_{k}^{s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma \in \mathcal{I}_{k}}\left\{s \geq 0: \frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}\right\}, \\
& \text { (generalized) } R_{k}^{g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{n}}\left\{s \geq 0: \frac{\rho+s \tau}{1+s} \in \mathcal{I}_{k}\right\} .
\end{aligned}
$$

Clearly, $R_{k}^{s}(\rho) \geq R_{k}^{g}(\rho)$. In general, $R_{k}^{s}(\rho) \neq R_{k}^{g}(\rho)$ for $\rho \in \mathcal{D}_{n}$.
3) $R_{1}^{g}(\rho)=R(\rho)$ but $R_{k}^{s}(\rho)$ is not defined for $k=1$ because \mathcal{I}_{1} does not span M_{n}.

Robustness of k-coherence for pure states

$$
\text { Let }|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t} \text { be a pure state with } v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0 .
$$

Robustness of k-coherence for pure states

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. For each $j=1, \ldots, n$, define $s_{j}:=\sum_{i=j}^{n} v_{j}$.

Robustness of k-coherence for pure states

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. For each $j=1, \ldots, n$, define $s_{j}:=\sum_{i=j}^{n} v_{j}$.

Theorem 1

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$.

Robustness of k-coherence for pure states

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. For each $j=1, \ldots, n$, define $s_{j}:=\sum_{i=j}^{n} v_{i}$.

Theorem 1

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. Fix $k \in\{2,3, \ldots, n\}$

Robustness of k-coherence for pure states

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. For each $j=1, \ldots, n$, define $s_{j}:=\sum_{i=j}^{n} v_{j}$.

Theorem 1

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. Fix $k \in\{2,3, \ldots, n\}$ and let $\ell \in\{2,3, \ldots, k\}$ be the largest integer such that $v_{\ell-1} \geq s_{\ell} /(k-\ell+1)$ (set $\ell=1$ if no such integer exists).

Robustness of k-coherence for pure states

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. For each $j=1, \ldots, n$, define $s_{j}:=\sum_{i=j}^{n} v_{j}$.

Theorem 1

Let $|v\rangle=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a pure state with $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \geq 0$. Fix $k \in\{2,3, \ldots, n\}$ and let $\ell \in\{2,3, \ldots, k\}$ be the largest integer such that $v_{\ell-1} \geq s_{\ell} /(k-\ell+1)$ (set $\ell=1$ if no such integer exists). Then

$$
\begin{aligned}
R_{k}^{s}(|v\rangle\langle v|) & =R_{k}^{g}(|v\rangle\langle v|) \\
& =\frac{s_{\varepsilon}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2} \\
& :=S(k, \ell) .
\end{aligned}
$$

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm:

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{o} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{o} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

where x_{i}^{\downarrow} denotes the coefficients of \mathbf{x} arranged so that $\left|x_{1}^{\downarrow}\right| \geq \cdots \geq\left|x_{n}^{\downarrow}\right|$.

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{0} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

where x_{i}^{\downarrow} denotes the coefficients of \mathbf{x} arranged so that $\left|x_{1}^{\downarrow}\right| \geq \cdots \geq\left|x_{n}^{\downarrow}\right|$. By norm duality, we have

$$
\|\mathbf{x}\|_{(k)}=\max \left\{\left|\mathbf{x}^{\dagger} \mathbf{a}\right|:\|\mathbf{a}\|_{(k)}^{0} \leq 1\right\}
$$

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{0} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

where x_{i}^{\downarrow} denotes the coefficients of \mathbf{x} arranged so that $\left|x_{1}^{\downarrow}\right| \geq \cdots \geq\left|x_{n}^{\downarrow}\right|$. By norm duality, we have

$$
\|\mathbf{x}\|_{(k)}=\max \left\{\left|\mathbf{x}^{\dagger} \mathbf{a}\right|:\|\mathbf{a}\|_{(k)}^{0} \leq 1\right\}
$$

and $S(k, \ell)=\||v\rangle \|_{(k)}^{2}-1$.

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{0} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

where x_{i}^{\downarrow} denotes the coefficients of \mathbf{x} arranged so that $\left|x_{1}^{\downarrow}\right| \geq \cdots \geq\left|x_{n}^{\downarrow}\right|$. By norm duality, we have

$$
\|\mathbf{x}\|_{(k)}=\max \left\{\left|\mathbf{x}^{\dagger} \mathbf{a}\right|:\|\mathbf{a}\|_{(k)}^{\circ} \leq 1\right\}
$$

and $S(k, \ell)=\||v\rangle \|_{(k)}^{2}-1$. We have $\|\mathbf{x}\|_{(1)}=\sum_{i}\left|x_{i}\right|$ and $\|\mathbf{x}\|_{(n)}=\sqrt{\mathbf{x}^{\dagger} \mathbf{x}}$.

Connection with k-support norm

The expression

$$
S(k, \ell)=\frac{s_{\ell}^{2}}{k-\ell+1}-\sum_{i=\ell}^{n} v_{i}^{2}
$$

is related to the k-support norm $\||v\rangle \|_{(k)}$, which can be defined via its dual norm: For $\mathbf{x} \in \mathbf{C}^{n}$,

$$
\begin{aligned}
\|\mathbf{x}\|_{(k)}^{o} & \left.\left.=\max \left\{\left|\mathbf{x}^{\dagger}\right| v\right\rangle|:| v\right\rangle \text { is } k \text {-incoherent }\right\} \\
& =\left.\sqrt{\sum_{i=1}^{k} \mid x_{i}^{\downarrow}}\right|^{2}
\end{aligned}
$$

where x_{i}^{\downarrow} denotes the coefficients of \mathbf{x} arranged so that $\left|x_{1}^{\downarrow}\right| \geq \cdots \geq\left|x_{n}^{\downarrow}\right|$. By norm duality, we have

$$
\|\mathbf{x}\|_{(k)}=\max \left\{\left|\mathbf{x}^{\dagger} \mathbf{a}\right|:\|\mathbf{a}\|_{(k)}^{0} \leq 1\right\}
$$

and $S(k, \ell)=\||v\rangle \|_{(k)}^{2}-1$. We have $\|\mathbf{x}\|_{(1)}=\sum_{i}\left|x_{i}\right|$ and $\|\mathbf{x}\|_{(n)}=\sqrt{\mathbf{x}^{\dagger} \mathbf{x}}$. Hence, the k-support norm can be seen as a natural way to interpolate between the ℓ_{1} and ℓ_{2} norms.

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\}
$$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
\mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}:\right. & \left.\operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
= & \left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
& \left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}.

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
R_{k}^{s}(\rho)=\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1
$$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
\mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=} & \left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
= & \left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
& \left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Let $\alpha=\frac{s_{\ell}}{k-\ell+1}$ and $\beta=\sqrt{\alpha s_{\ell}+\sum_{j=1}^{\ell-1} v_{j}^{2}}$.

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.\quad W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Let $\alpha=\frac{s_{\ell}}{k-\ell+1}$ and $\beta=\sqrt{\alpha s_{\ell}+\sum_{j=1}^{\ell-1} v_{j}^{2}}$. Define $W:=\mathbf{a a}^{t}$, where

$$
\mathbf{a}:=\frac{1}{\beta}\left(v_{1}, v_{2}, \ldots, v_{\ell-1}, \alpha, \alpha, \ldots, \alpha\right)^{t} \in \mathbb{R}^{n}
$$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Let $\alpha=\frac{s_{\ell}}{k-\ell+1}$ and $\beta=\sqrt{\alpha s_{\ell}+\sum_{j=1}^{\ell-1} v_{j}^{2}}$. Define $W:=\mathbf{a a}^{t}$, where

$$
\mathbf{a}:=\frac{1}{\beta}\left(v_{1}, v_{2}, \ldots, v_{\ell-1}, \alpha, \alpha, \ldots, \alpha\right)^{t} \in \mathbb{R}^{n} .
$$

Then $W \succeq 0, I-W \in \mathcal{I}_{k}^{\circ}$

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Let $\alpha=\frac{s_{\ell}}{k-\ell+1}$ and $\beta=\sqrt{\alpha s_{\ell}+\sum_{j=1}^{\ell-1} v_{j}^{2}}$. Define $W:=\mathbf{a a}^{t}$, where

$$
\mathbf{a}:=\frac{1}{\beta}\left(v_{1}, v_{2}, \ldots, v_{\ell-1}, \alpha, \alpha, \ldots, \alpha\right)^{t} \in \mathbb{R}^{n}
$$

Then $W \succeq 0, I-W \in \mathcal{I}_{k}^{\circ}$ and $\operatorname{Tr}(|v\rangle\langle v| W)-1=\beta^{2}-1=S(k, \ell)$.

Lower bound via semidefinite programming duality

Dual program formulation

Let \mathcal{I}_{k}° be the dual cone of \mathcal{I}_{k} defined by

$$
\begin{aligned}
& \mathcal{I}_{k}^{\circ} \stackrel{\text { def }}{=}\left\{W=W^{\dagger}: \operatorname{Tr}(W \rho) \geq 0 \quad \forall \rho \in \mathcal{I}_{k}\right\} \\
&=\left\{W=W^{\dagger}: \text { all } k \times k\right. \text { principal submatrices } \\
&\left.W\left[i_{1}, \ldots, i_{k}\right] \text { of } W \text { are } \succeq 0\right\},
\end{aligned}
$$

where $W\left[i_{1}, \ldots, i_{k}\right]$ denotes the principal submatrix of W containing rows and columns i_{1}, \ldots, i_{k}. Then

$$
\begin{aligned}
R_{k}^{s}(\rho) & =\max _{W \in \mathcal{I}_{k}^{\circ}}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1 \\
R_{k}^{g}(\rho) & =\max _{W \succeq 0}\left\{\operatorname{Tr}(\rho W): I-W \in \mathcal{I}_{k}^{\circ}\right\}-1,
\end{aligned}
$$

Let $\alpha=\frac{s_{\ell}}{k-\ell+1}$ and $\beta=\sqrt{\alpha s_{\ell}+\sum_{j=1}^{\ell-1} v_{j}^{2}}$. Define $W:=\mathbf{a a}^{t}$, where

$$
\mathbf{a}:=\frac{1}{\beta}\left(v_{1}, v_{2}, \ldots, v_{\ell-1}, \alpha, \alpha, \ldots, \alpha\right)^{t} \in \mathbb{R}^{n} .
$$

Then $W \succeq 0, I-W \in \mathcal{I}_{k}^{\circ}$ and $\operatorname{Tr}(|v\rangle\langle v| W)-1=\beta^{2}-1=S(k, \ell)$. Hence, $R_{k}^{g}(\rho) \geq S(k, \ell)$.

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$,

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$.

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1)}$.

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1}$). For cases $\mathbf{2}$) and 3), we show that

$$
\sigma=O_{\ell-1} \oplus \hat{\sigma}
$$

where $\hat{\sigma} \in \mathcal{I}_{k}$ has non-negative diagonal entries, non-positive off-diagonal entries, and row sums 0 .

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1}$). For cases $\mathbf{2}$) and 3), we show that

$$
\sigma=O_{\ell-1} \oplus \hat{\sigma}
$$

where $\hat{\sigma} \in \mathcal{I}_{k}$ has non-negative diagonal entries, non-positive off-diagonal entries, and row sums 0 .

Also, instead of requiring $|v\rangle\langle v|+s \sigma$ to be in $(1+s) \mathcal{I}_{k}$,

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1}$). For cases $\mathbf{2}$) and 3), we show that

$$
\sigma=O_{\ell-1} \oplus \hat{\sigma}
$$

where $\hat{\sigma} \in \mathcal{I}_{k}$ has non-negative diagonal entries, non-positive off-diagonal entries, and row sums 0 .

Also, instead of requiring $|v\rangle\langle v|+s \sigma$ to be in $(1+s) \mathcal{I}_{k}$, we can require it to be a convex combination of the (finitely many) matrices of the form $\mathbf{x x}^{t}$,

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1}$). For cases $\mathbf{2}$) and 3), we show that

$$
\sigma=O_{\ell-1} \oplus \hat{\sigma}
$$

where $\hat{\sigma} \in \mathcal{I}_{k}$ has non-negative diagonal entries, non-positive off-diagonal entries, and row sums 0 .

Also, instead of requiring $|v\rangle\langle v|+s \sigma$ to be in $(1+s) \mathcal{I}_{k}$, we can require it to be a convex combination of the (finitely many) matrices of the form $\mathbf{x x}^{t}$, where each \mathbf{x} is of the form $\mathbf{x}=\left(v_{1}, v_{2}, \ldots, v_{\ell-1}\right) \oplus \tilde{\mathbf{x}}$ for some $\tilde{\mathbf{x}}$ with exactly $k-\ell+1$ non-zero entries, each equal to $s_{\ell} /(k-\ell+1)$.

Upper bound

To prove that $R_{k}^{s}(\rho) \leq S(k, \ell)$, we show that there exists $\sigma \in \mathcal{I}_{k}$ such that $\frac{\rho+s \sigma}{1+s} \in \mathcal{I}_{k}$ for $s=S(k, \ell)$. The proof is divded into three cases:

1) $\ell=k$, 2) $\ell=1$ and 3) $1<\ell<k$.

We only have explicit form of σ for case $\mathbf{1}$). For cases $\mathbf{2}$) and 3), we show that

$$
\sigma=O_{\ell-1} \oplus \hat{\sigma}
$$

where $\hat{\sigma} \in \mathcal{I}_{k}$ has non-negative diagonal entries, non-positive off-diagonal entries, and row sums 0 .

Also, instead of requiring $|v\rangle\langle v|+s \sigma$ to be in $(1+s) \mathcal{I}_{k}$, we can require it to be a convex combination of the (finitely many) matrices of the form $\mathbf{x x}^{t}$, where each \mathbf{x} is of the form $\mathbf{x}=\left(v_{1}, v_{2}, \ldots, v_{\ell-1}\right) \oplus \tilde{\mathbf{x}}$ for some $\tilde{\mathbf{x}}$ with exactly $k-\ell+1$ non-zero entries, each equal to $s_{\ell} /(k-\ell+1)$.

This allows the search of σ using linear programming, instead of semidefinite programming.

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i.

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i. The standard and generalized k-robustnesses of entanglement are defined, respectively,

$$
R_{k}^{E, s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma: S N(\sigma) \leq k}\left\{s \geq 0: S N\left(\frac{\rho+s \sigma}{1+s}\right) \leq k\right\}
$$

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i. The standard and generalized k-robustnesses of entanglement are defined, respectively,

$$
\begin{array}{ll}
R_{k}^{E, s}(\rho) & \stackrel{\text { def }}{=} \min _{\sigma: S N(\sigma) \leq k}\left\{s \geq 0: S N\left(\frac{\rho+s \sigma}{1+s}\right) \leq k\right\} \\
R_{k}^{E, g}(\rho) & \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{m n}}\left\{s \geq 0: S N\left(\frac{\rho+s \tau}{1+s}\right) \leq k\right\} .
\end{array}
$$

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i. The standard and generalized k-robustnesses of entanglement are defined, respectively,

$$
\begin{array}{ll}
R_{k}^{E, s}(\rho) & \stackrel{\text { def }}{=} \min _{\sigma: S N(\sigma) \leq k}\left\{s \geq 0: S N\left(\frac{\rho+s \sigma}{1+s}\right) \leq k\right\} \\
R_{k}^{E, g}(\rho) & \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{m n}}\left\{s \geq 0: S N\left(\frac{\rho+s \tau}{1+s}\right) \leq k\right\} .
\end{array}
$$

Define the k-projective tensor norm of X by

$$
\|X\|_{\gamma, k} \stackrel{\text { def }}{=} \inf \left\{\sum_{i}\left|c_{i}\right|: X=\sum_{i} c_{i}\left|v_{i}\right\rangle\left\langle w_{i}\right| \text { with } S R\left(\left|v_{i}\right\rangle\right), S R\left(\left|w_{i}\right\rangle\right) \leq k \forall i\right\}
$$

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i. The standard and generalized k-robustnesses of entanglement are defined, respectively,

$$
\begin{aligned}
& R_{k}^{E, s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma: S N(\sigma) \leq k}\left\{s \geq 0: S N\left(\frac{\rho+s \sigma}{1+s}\right) \leq k\right\} \\
& R_{k}^{E, g}(\rho) \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{m n}}\left\{s \geq 0: S N\left(\frac{\rho+s \tau}{1+s}\right) \leq k\right\} .
\end{aligned}
$$

Define the k-projective tensor norm of X by

$$
\|X\|_{\gamma, k} \stackrel{\text { def }}{=} \inf \left\{\sum_{i}\left|c_{i}\right|: X=\sum_{i} c_{i}\left|v_{i}\right\rangle\left\langle w_{i}\right| \text { with } S R\left(\left|v_{i}\right\rangle\right), S R\left(\left|w_{i}\right\rangle\right) \leq k \forall i\right\}
$$

Johnston and Kribs had conjectured that for any pure state $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $k=1, \ldots, \min \{m, n\}, R_{k}^{E, s}(|v\rangle\langle v|)=\||v\rangle\langle v| \|_{\gamma, k}-1$.

Application to entanglement measures

Let $S R(|v\rangle)$ denote the Schmidt rank of the pure state $|v\rangle$ and let $S N(\rho)$ denote the Schmidt number of a mixed state $\rho \in \mathcal{D}_{m n}$, i.e. $\operatorname{SN}(\rho)$ is the least integer k such that we can write

$$
\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

with $p_{i} \geq 0$ and $S R\left(\left|v_{i}\right\rangle\right) \leq k$ for all i. The standard and generalized k-robustnesses of entanglement are defined, respectively,

$$
\begin{aligned}
& R_{k}^{E, s}(\rho) \stackrel{\text { def }}{=} \min _{\sigma: S N(\sigma) \leq k}\left\{s \geq 0: S N\left(\frac{\rho+s \sigma}{1+s}\right) \leq k\right\} \\
& R_{k}^{E, g}(\rho)
\end{aligned} \stackrel{\text { def }}{=} \min _{\tau \in \mathcal{D}_{m n}}\left\{s \geq 0: S N\left(\frac{\rho+s \tau}{1+s}\right) \leq k\right\} . ~ \$
$$

Define the k-projective tensor norm of X by

$$
\|X\|_{\gamma, k} \stackrel{\text { def }}{=} \inf \left\{\sum_{i}\left|c_{i}\right|: X=\sum_{i} c_{i}\left|v_{i}\right\rangle\left\langle w_{i}\right| \text { with } S R\left(\left|v_{i}\right\rangle\right), S R\left(\left|w_{i}\right\rangle\right) \leq k \forall i\right\}
$$

Johnston and Kribs had conjectured that for any pure state $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $k=1, \ldots, \min \{m, n\}, R_{k}^{E, s}(|v\rangle\langle v|)=\||v\rangle\langle v| \|_{\gamma, k}-1$.
Recently, Regula has shown that $R_{k}^{E, g}(|v\rangle\langle v|)=\||v\rangle\langle v| \|_{\gamma, k}-1$.

Application to entanglement measures

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$ is the vector of Schmidt coefficients of $|v\rangle$,

Application to entanglement measures

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$ is the vector of Schmidt coefficients of $|v\rangle$, then we have

$$
\||v\rangle\left\langle v \|_{\gamma, 1}=\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2}\right.
$$

Application to entanglement measures

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$ is the vector of Schmidt coefficients of $|v\rangle$, then we have

$$
\begin{aligned}
\||v\rangle\langle v| \|_{\gamma, 1} & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2} \quad \text { and } \\
R_{1}^{E, s}(|v\rangle\langle v|) & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2}-1
\end{aligned}
$$

Application to entanglement measures

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$ is the vector of Schmidt coefficients of $|v\rangle$, then we have

$$
\begin{aligned}
\||v\rangle\langle v| \|_{\gamma, 1} & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2} \quad \text { and } \\
R_{1}^{E, s}(|v\rangle\langle v|) & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2}-1
\end{aligned}
$$

More generally, we have

$$
\||v\rangle\langle v| \|_{\gamma, k}=R_{k}^{s}(|\lambda\rangle\langle\lambda|)+1
$$

where $R_{k}^{s}(|\lambda\rangle\langle\lambda|)$ is given by the formula of Theorem 1.

Application to entanglement measures

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$ is the vector of Schmidt coefficients of $|v\rangle$, then we have

$$
\begin{aligned}
\||v\rangle\langle v| \|_{\gamma, 1} & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2} \quad \text { and } \\
R_{1}^{E, s}(|v\rangle\langle v|) & =\left(\sum_{i=1}^{r} \lambda_{i}\right)^{2}-1
\end{aligned}
$$

More generally, we have

$$
\||v\rangle\langle v| \|_{\gamma, k}=R_{k}^{s}(|\lambda\rangle\langle\lambda|)+1
$$

where $R_{k}^{s}(|\lambda\rangle\langle\lambda|)$ is given by the formula of Theorem 1.

Theorem 2

Let $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ be a pure state with non-zero Schmidt coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and define $|\lambda\rangle:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)^{t}$. Then

$$
R_{k}^{E, s}(|v\rangle\langle v|)=R_{k}^{s}(|\lambda\rangle\langle\lambda|)=\||v\rangle\langle v| \|_{\gamma, k}-1=R_{k}^{E, g}(|v\rangle\langle v|) .
$$

Conclusion

1) We derived a formula for the standard robustnesses of k-coherence and k-entanglement on pure states that agrees with known formulas for the corresponding generalized robustnesses, thus resolving conjectures about both of these families of measures.

Conclusion

1) We derived a formula for the standard robustnesses of k-coherence and k-entanglement on pure states that agrees with known formulas for the corresponding generalized robustnesses, thus resolving conjectures about both of these families of measures.
2) As our proof was non-constructive in nature, we also provided a computational method based on linear programming that allows us to quickly compute the closest k-incoherent state or closest Schmidt number k state. (See reference)

Conclusion

1) We derived a formula for the standard robustnesses of k-coherence and k-entanglement on pure states that agrees with known formulas for the corresponding generalized robustnesses, thus resolving conjectures about both of these families of measures.
2) As our proof was non-constructive in nature, we also provided a computational method based on linear programming that allows us to quickly compute the closest k-incoherent state or closest Schmidt number k state. (See reference)
3) (Open problems:) Formulas or bounds for $R_{k}^{s}(\rho), R_{k}^{g}(\rho), R_{k}^{E, s}(\rho)$, $R_{k}^{E, g}(\rho)$.

Conclusion

1) We derived a formula for the standard robustnesses of k-coherence and k-entanglement on pure states that agrees with known formulas for the corresponding generalized robustnesses, thus resolving conjectures about both of these families of measures.
2) As our proof was non-constructive in nature, we also provided a computational method based on linear programming that allows us to quickly compute the closest k-incoherent state or closest Schmidt number k state. (See reference)
3) (Open problems:) Formulas or bounds for $R_{k}^{s}(\rho), R_{k}^{g}(\rho), R_{k}^{E, s}(\rho)$, $R_{k}^{E, g}(\rho)$. Connections between $R_{k}^{E, s}(\rho)$ and $R_{k}^{s}(\hat{\rho})$.

Thank you for your attention!

Reference

Some notes on the robustness of k-coherence and k-entanglement, Physical Review A, 98 (2018) 022328.

