α -Logarithmic negativity

Mark M. Wilde

Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, USA

mwilde@lsu.edu

Based on joint work with Xin Wang in arXiv:1904.10437

Mathematical Aspects in Current Quantum Information Theory, Seoul National University, Seoul, Korea, May 23, 2019

Motivation: Entanglement and its manipulation

- Separable state: $\rho_{AB} = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$.
- Entangled state: $\rho_{AB} \neq \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$.
- The most natural set of free operations for entanglement manipulation consists of local operations and classical communication (LOCC), which has a complex structure [CLM⁺14].
- Entangled states cannot be created by LOCC.
- Inspired the resource theory framework: free states + free operations.
- The seminal ideas coming from it are influencing diverse areas: quantum thermodynamics, quantum coherence and superposition, non-Gaussianity, magic states...

Quantifying entanglement

- Entanglement is a key physical resource in quantum information, quantum computation, and quantum cryptography.
- A quantitative theory is highly desirable to fully exploit the power of entanglement.
- Entanglement measure E
 - Faithfulness: $E(\rho) = 0$ if and only if ρ is separable.
 - **LOCC monotonicity**: $E(\Lambda(\rho)) \leq E(\rho)$ for any $\Lambda \in \text{LOCC}$.
 - Entanglement monotone, convexity, additivity, etc.
- Zoo of ent. measures [PV07, Chr06].
- Information-processing task gives precise and operationally meaningful way to quantify a given physical resource.

Beyond LOCC

- Due to the mathematical difficulty of dealing with separability and LOCC, it can be helpful to move beyond it.
- The **positive partial transpose** (PPT) criterion was proposed early [Per96, HHH96]
- A state ρ_{AB} is PPT if

$$T_B(\rho_{AB}) \ge 0,$$

where partial transpose map T_B for orthonormal basis $\{|i\rangle_B\}_i$ is defined as

$$\mathcal{T}_B(Y_{AB}) \equiv \sum_{i,j} \left(I_A \otimes |i\rangle \langle j|_B \right) Y_{AB} \left(I_A \otimes |i\rangle \langle j|_B \right),$$

• If a state is separable, then it is PPT. Converse is not true in general.

Resource theory of NPT entanglement

- Rains proposed the **resource theory of non-positive partial transpose entanglement** [Rai99, Rai01]. That is, PPT states are free and non-PPT (NPT) states are resourceful.
- Free operations are the completely PPT preserving (C-PPT-P) channels. A bipartite channel $\mathcal{N}_{AB \rightarrow A'B'}$ is C-PPT-P if

$$T_{B'} \circ \mathcal{N}_{AB \to A'B'} \circ T_B \in \mathsf{CP}$$

• Equivalently, the Choi operator $J_{AA'BB'}^{\mathcal{N}}$ for $\mathcal{N}_{AB \to A'B'}$ is PPT:

$$T_{BB'}(J_{AA'BB'}^{\mathcal{N}}) \geq 0$$

• Key result: All LOCC bipartite channels are C-PPT-P. So then we can use this relationship to find bounds for tasks in resource theory of entanglement by using resource theory of NPT entanglement.

Logarithmic negativity

 One of the most popular measures for resource theory of NPT entanglement is the logarithmic negativity [VW02, Ple05]:

$$E_N(\rho_{AB}) \equiv \log_2 \|T_B(\rho_{AB})\|_1,$$

• Entanglement monotone:

$$E_N(\rho_{AB}) \ge \sum_x p(x) E_N(\rho_{AB}^x)$$

where $\{p(x), \rho_{AB}^x\}_x$ is ensemble resulting from C-PPT-P instrument.

• Faithful on PPT states:

$$E_N(\rho_{AB}) = 0 \quad \iff \quad \rho_{AB} \in \mathsf{PPT}$$

It is neither convex nor monogamous.

• Recently, the κ-entanglement measure was defined as [WW18]

$$\begin{split} E_{\kappa}(\rho_{AB}) &\equiv \log_2 \inf\{ \mathsf{Tr}[S_{AB}] : \\ &- S_{AB} \leq T_B(\rho_{AB}) \leq S_{AB}, \ T_B(S_{AB}) \geq 0 \}. \end{split}$$

- Can be computed by semi-definite programming [WW18].
- Has a direct operational meaning in the resource theory of NPT entanglement, being equal to the exact PPT entanglement cost.
- It is an entanglement monotone, faithful on PPT states, but it is neither convex nor monogamous.
- Reduces to logarithmic negativity for all bipartite two-qubit states and bipartite bosonic Gaussian states.

- Basic question is whether there is some relation between the two entanglement measures.
- **Result:** logarithmic negativity and *κ*-entanglement are extremes of a family of entanglement measures

- Consider
 - $1 \alpha \ge 1 ,$
 - 2 a Hermitian operator $X \neq 0$, and
 - **③** a positive semi-definite operator $\sigma \neq 0$:
- Then define

$$\mu_{\alpha}(X\|\sigma) \equiv \begin{cases} \left\| \sigma^{\frac{1-\alpha}{2\alpha}} X \sigma^{\frac{1-\alpha}{2\alpha}} \right\|_{\alpha} & \text{if } \operatorname{supp}(X) \subseteq \operatorname{supp}(\sigma) \\ +\infty & \text{else} \end{cases},\\ \nu_{\alpha}(X\|\sigma) \equiv \log_{2} \mu_{\alpha}(X\|\sigma), \end{cases}$$

• Key properties of $\mu_{\alpha}(X\|\sigma)$ and $\nu_{\alpha}(X\|\sigma)$ can be derived from [Bei13] and [Hia16]

Definition (α -logarithmic negativity)

Let ρ_{AB} be a bipartite state. Its α -logarithmic negativity defined as

$$E_{N}^{\alpha}(\rho_{AB}) \equiv \inf_{\sigma_{AB} \in \mathsf{PPT}(A:B)} \nu_{\alpha}(T_{B}(\rho_{AB}) \| \sigma_{AB}),$$

where PPT(A : B) is the set of PPT states:

$$\mathsf{PPT}(A:B) \equiv \{\sigma_{AB}: \sigma_{AB}, T_B(\sigma_{AB}) \ge 0, \ \mathsf{Tr}[\sigma_{AB}] = 1\}.$$

We now discuss properties of the α -logarithmic negativities.

Proposition

Let ρ_{AB} be a bipartite quantum state, and let $1 \le \alpha \le \beta$. Then $E_N(\rho_{AB}) \le E_N^{\alpha}(\rho_{AB}) \le E_N^{\beta}(\rho_{AB}).$ Follows from a simple generalization of [Bei13, Theorem 7]

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Then the following inequality holds for all $\beta > \alpha > 1$:

$$rac{lpha}{lpha-1}\left[
u_{lpha}(X\|\sigma) - \log_2\|X\|_1
ight] \leq rac{eta}{eta-1}\left[
u_{eta}(X\|\sigma) - \log_2\|X\|_1
ight]$$

which implies

$$u_{\alpha}(X\|\sigma) \leq \nu_{\beta}(X\|\sigma).$$

Proposition

Let ρ_{AB} be a bipartite quantum state. Then

$$\lim_{\alpha \to 1} E_N^{\alpha}(\rho_{AB}) = E_N(\rho_{AB}).$$

Limits

Definition (Max-logarithmic negativity)

For bipartite state ρ_{AB} , max-logarithmic negativity $E_N^{max}(\rho_{AB})$ defined as

$$E_{N}^{\max}(\rho_{AB}) \equiv \inf_{\sigma_{AB} \in \mathsf{PPT}(A:B)} \nu_{\infty}(T_{B}(\rho_{AB}) \| \sigma_{AB}),$$

and

$$u_{\infty}(X\|\sigma) = D_{\max}(X\|\sigma) = \log_2 \left\|\sigma^{-1/2}X\sigma^{-1/2}\right\|_{\infty}$$

Proposition

Let ρ_{AB} be a bipartite quantum state. Then

$$E_{\kappa}(\rho_{AB}) = E_{N}^{\max}(\rho_{AB}) = \lim_{\alpha \to \infty} E_{N}^{\alpha}(\rho_{AB}).$$

Proposition

If ρ_{AB} satisfies the condition $T_B(|T_B(\rho_{AB})|) \ge 0$, then all α -logarithmic negativities are equal; i.e., the following equality holds for all $\alpha \ge 1$:

 $E_N^{\alpha}(\rho_{AB}) = E_N(\rho_{AB}).$

All of the following satisfy $T_B(|T_B(\rho_{AB})|) \ge 0$:

- pure states [ADMVW02],
- two-qubit states [lsh04],
- Werner states [APE03], and
- ø bosonic Gaussian states [APE03]

Thus, conclude that collapse above holds for such states.

Definition

A C-PPT-P quantum instrument consists of the collection

$$\{\mathcal{N}_{AB\to A'B'}^x\}_x,$$

where

Theorem (Entanglement monotone)

Let $\{\mathcal{N}_{AB\to A'B'}^{\mathsf{x}}\}_{\mathsf{x}}$ be a C-PPT-P quantum instrument, and ρ_{AB} a bipartite state. Then α -logarithmic negativity is an **entanglement monotone**; i.e., the following inequality holds for all $\alpha \geq 1$:

$$E_N^{\alpha}(\rho_{AB}) \geq \sum_{x:p(x)>0} p(x) E_N^{\alpha}(\rho_{A'B'}^x),$$

where

$$p(x) \equiv \operatorname{Tr}[\mathcal{N}_{AB \to A'B'}^{x}(\rho_{AB})],$$
$$\rho_{A'B'}^{x} \equiv \frac{1}{p(x)} \mathcal{N}_{AB \to A'B'}^{x}(\rho_{AB}).$$

Follows from a simple generalization of [Bei13, Theorem 6]

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Let \mathcal{P} be a positive and trace-non-increasing map. Then the following inequality holds for all $\alpha \geq 1$:

 $u_{\alpha}(X \| \sigma) \geq \nu_{\alpha}(\mathcal{P}(X) \| \mathcal{P}(\sigma)).$

Entanglement monotone property also follows from

Lemma

Let
$$Y_{XB} \equiv \sum_{x} p(x) |x\rangle \langle x|_X \otimes Y_B^x$$
, $\sigma_{XB} \equiv \sum_{x} q(x) |x\rangle \langle x|_X \otimes \sigma_B^x$,

where $\{Y_B^x\}_x$ is a set of Hermitian operators, $\{p(x)\}_x$ is a probability distribution, $\{\sigma_B^x\}$ is a set of positive definite operators, and $\{q(x)\}_x$ is a set of strictly positive reals. Then for $\alpha \ge 1$,

$$\nu_{\alpha}(Y_{XB} \| \sigma_{XB}) \geq \sum_{x} p(x) \nu_{\alpha}(Y_{B}^{x} \| \sigma_{B}^{x}) + \left(\frac{\alpha - 1}{\alpha}\right) D(p \| q),$$

where $D(p||q) := \sum_{x} p(x) \log_2(p(x)/q(x))$ is the classical relative entropy.

Proposition

Let ρ_{AB} be a bipartite state and $\alpha \ge 1$. Then the α -logarithmic negativity $E_N^{\alpha}(\rho_{AB})$ can be calculated by convex optimization.

The above proposition follows from

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Then for all $\alpha \geq 1$, the following function is convex:

 $\sigma \mapsto \left[\mu_{\alpha}(X\|\sigma)\right]^{\alpha}.$

The above lemma follows directly from [Hia16, Theorem 5.2] (see also brief remarks stated before [Hia16, Theorem 5.3])

Proposition (Faithfulness)

Let ρ_{AB} be a bipartite quantum state, and let $\alpha \geq 1$. Then

 $E_N^{\alpha}(\rho_{AB}) \geq 0$

and

$$E_N^{\alpha}(\rho_{AB}) = 0 \qquad \Longleftrightarrow \qquad \rho_{AB} \in \mathsf{PPT}(A:B).$$

No convexity

By picking

$$\begin{split} \rho_{AB}^{1} &\equiv \Phi_{AB}^{2}, \qquad \rho_{AB}^{2} \equiv \frac{1}{2} \left(|00\rangle \langle 00|_{AB} + |11\rangle \langle 11|_{AB} \right), \\ \overline{\rho}_{AB} &\equiv \frac{1}{2} \left(\rho_{AB}^{1} + \rho_{AB}^{2} \right), \end{split}$$

we find for all $\alpha \in [1,\infty]$ that

$$\begin{split} E^{\alpha}_{N}(\rho^{1}_{AB}) &= 1, \qquad E^{\alpha}_{N}(\rho^{2}_{AB}) = 0, \\ E^{\alpha}_{N}(\overline{\rho}_{AB}) &= \log_{2}\frac{3}{2}, \end{split}$$

which implies no convexity:

$$E_N^{\alpha}(\overline{\rho}_{AB}) > rac{1}{2} \left[E_N^{\alpha}(\rho_{AB}^1) + E_N^{\alpha}(\rho_{AB}^2)
ight].$$

An entanglement measure *E* is monogamous [CKW00, Ter04, KW04] if the following inequality holds for all tripartite states ρ_{ABC} :

$$E(\rho_{A:B}) + E(\rho_{A:C}) \leq E(\rho_{A:BC}),$$

where the bipartition is indicated by a colon.

- As a consequence of the counterexample given in [WW18, Proposition 7], it follows that the α-logarithmic negativity is not generally monogamous for any choice of α ∈ [1,∞].
- Indeed, consider the following state of three qubits:

$$|\psi
angle_{ABC}\equivrac{1}{2}\left(|000
angle_{ABC}+|011
angle_{ABC}+\sqrt{2}|110
angle_{ABC}
ight).$$

Then

$$E_{N}^{\alpha}(\psi_{A:B}) + E_{N}^{\alpha}(\psi_{A:C}) > E_{N}^{\alpha}(\psi_{A:BC}),$$

Additivity?

Given tensor-product state $\omega_{A_1A_2B_1B_2} = \rho_{A_1B_1} \otimes \tau_{A_2B_2}$.

• Logarithmic negativity is additive [VW02]:

$$E_N(\omega_{A_1A_2:B_1B_2}) = E_N(\rho_{A_1:B_1}) + E_N(\tau_{A_2:B_2}).$$

• So is κ -entanglement [WW18]:

$$E_{\kappa}(\omega_{A_1A_2:B_1B_2}) = E_{\kappa}(\rho_{A_1:B_1}) + E_{\kappa}(\tau_{A_2:B_2}).$$

• For α -logarithmic negativity, subadditivity holds for $\alpha \in (1,\infty)$:

$$E_{N}^{\alpha}(\omega_{A_{1}A_{2}:B_{1}B_{2}}) \leq E_{N}^{\alpha}(\rho_{A_{1}:B_{1}}) + E_{N}^{\alpha}(\tau_{A_{2}:B_{2}}).$$

What about superadditivity?

• Logarithmic negativity of a channel defined as [HW01]

$$E_N(\mathcal{N}) \equiv \log_2 \|T_B \circ \mathcal{N}_{A \to B}\|_\diamond.$$

• **Diamond norm** of Herm.-preserving map $\mathcal{M}_{A \rightarrow B}$ defined as [Kit97]

$$\left\|\mathcal{M}_{A\to B}\right\|_{\diamond} \equiv \sup_{\psi_{RA}} \left\|\mathcal{M}_{A\to B}(\psi_{RA})\right\|_{1},$$

 Can write the logarithmic negativity of a quantum channel as an optimized version of the logarithmic negativity of quantum states:

$$E_N(\mathcal{N}) = \sup_{\psi_{RA}} E_N(\omega_{RB}),$$

where $\omega_{RB} \equiv \mathcal{N}_{A \to B}(\psi_{RA})$.

Definition (α -log. negativity of a channel)

The $\alpha\text{-logarithmic}$ negativity of a quantum channel is defined for $\alpha\geq 1$ as

$$E_N^{lpha}(\mathcal{N}) = \sup_{\psi_{RA}} E_N^{lpha}(\omega_{RB}),$$

with $\omega_{RB} \equiv \mathcal{N}_{A \to B}(\psi_{RA})$.

Recover κ -entanglement of a channel as a special case ($\alpha \to \infty$), which is equal to the exact PPT simulation cost of a quantum channel (parallel or sequential simulation) [WW18]

- α -logarithmic negativities are a family of entanglement monotones that include logarithmic negativity and κ -entanglement
- Entanglement monotone property follows from techniques of [Bei13]
- They are ordered, faithful, and computable by convex optimization
- They are neither convex nor monogamous

- The concept put forward here can be generalized.
- Idea is to compare an unphysical object versus a physical one to obtain a useful information, distinguishability, or entanglement measure
- In our case, we compare the partial transpose of ρ_{AB} to the set of PPT states using $\nu_{\alpha}(X \| \sigma)$.

Going forward

Yesterday, we saw an interesting re-expression of diamond norm, using the same concept:

References I

- [ADMVW02] Koenraad Audenaert, Bart De Moor, Karl Gerd H. Vollbrecht, and Reinhard F. Werner. Asymptotic relative entropy of entanglement for orthogonally invariant states. *Physical Review A*, 66(3):032310, September 2002. arXiv:quant-ph/0204143.
- [APE03] Koenraad Audenaert, Martin B. Plenio, and Jens Eisert. Entanglement cost under positive-partial-transpose-preserving operations. *Physical Review Letters*, 90(2):027901, January 2003. arXiv:quant-ph/0207146.
- [Bei13] Salman Beigi. Sandwiched Rényi divergence satisfies data processing inequality. *Journal of Mathematical Physics*, 54(12):122202, December 2013. arXiv:1306.5920.
- [Chr06] Matthias Christandl. The Structure of Bipartite Quantum States: Insights from Group Theory and Cryptography. PhD thesis, University of Cambridge, April 2006. arXiv:quant-ph/0604183.
- [CKW00] Valerie Coffman, Joydip Kundu, and William K. Wootters. Distributed entanglement. *Physical Review A*, 61(5):052306, April 2000. arXiv:quant-ph/9907047.

References II

- [CLM⁺14] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter. Everything you always wanted to know about LOCC (but were afraid to ask). *Communications in Mathematical Physics*, 328(1):303–326, May 2014. arXiv:1210.4583.
- [HHH96] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. *Physics Letters A*, 223(1-2):1–8, November 1996. arXiv:quant-ph/9605038.
- [Hia16] Fumio Hiai. Concavity of certain matrix trace and norm functions. II. Linear Algebra and its Applications, 496:193–220, May 2016. arXiv:1507.00853.
- [HW01] Alexander S. Holevo and Reinhard F. Werner. Evaluating capacities of bosonic Gaussian channels. *Physical Review A*, 63(3):032312, February 2001. arXiv:quant-ph/9912067.
- [Ish04] Satoshi Ishizaka. Binegativity and geometry of entangled states in two qubits. *Physical Review A*, 69(2):020301(R), February 2004. arXiv:quant-ph/0308056.

References III

[Kit97] Alexei Kitaev. Quantum computations: algorithms and error correction. *Russian Mathematical Surveys*, 52(6):1191–1249, December 1997.

- [KW04] Masato Koashi and Andreas Winter. Monogamy of quantum entanglement and other correlations. *Physical Review A*, 69(2):022309, February 2004. arXiv:quant-ph/0310037.
- [Per96]Asher Peres. Separability criterion for density matrices. Physical Review
Letters, 77(8):1413–1415, August 1996. arXiv:quant-ph/9604005.
- [Ple05] Martin B. Plenio. Logarithmic negativity: A full entanglement monotone that is not convex. *Physical Review Letters*, 95(9):090503, August 2005. arXiv:quant-ph/0505071.
- [PV07] Martin B. Plenio and Shashank S. Virmani. An introduction to entanglement measures. *Quantum Information and Computation*, 7(1):1–51, 2007. arXiv:quant-ph/0504163.
- [Rai99] Eric M. Rains. Bound on distillable entanglement. Physical Review A, 60(1):179–184, July 1999. arXiv:quant-ph/9809082.

[Rai01] Eric M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47(7):2921–2933, November 2001. arXiv:quant-ph/0008047.

[Ter04] Barbara M. Terhal. Is entanglement monogamous? IBM Journal of Research and Development, 48(1):71–78, 2004. arXiv:quant-ph/0307120.

[VW02] Guifre Vidal and Reinhard F. Werner. Computable measure of entanglement. *Physical Review A*, 65(3):032314, February 2002. arXiv:quant-ph/0102117.

[WW18] Xin Wang and Mark M. Wilde. Exact entanglement cost of quantum states and channels under PPT-preserving operations. September 2018. arXiv:1809.09592.