α-Logarithmic negativity

Mark M. Wilde

Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology,

Louisiana State University, Baton Rouge, Louisiana, USA
mwilde@lsu.edu
Based on joint work with Xin Wang in arXiv:1904.10437

Mathematical Aspects in Current Quantum Information Theory, Seoul National University, Seoul, Korea, May 23, 2019

Motivation: Entanglement and its manipulation

- Separable state: $\rho_{A B}=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$.
- Entangled state: $\rho_{A B} \neq \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$.
- The most natural set of free operations for entanglement manipulation consists of local operations and classical communication (LOCC), which has a complex structure $\left[C L M^{+} 14\right]$.
- Entangled states cannot be created by LOCC.
- Inspired the resource theory framework: free states + free operations.
- The seminal ideas coming from it are influencing diverse areas: quantum thermodynamics, quantum coherence and superposition, non-Gaussianity, magic states...

Quantifying entanglement

- Entanglement is a key physical resource in quantum information, quantum computation, and quantum cryptography.
- A quantitative theory is highly desirable to fully exploit the power of entanglement.
- Entanglement measure E
- Faithfulness: $E(\rho)=0$ if and only if ρ is separable.
- LOCC monotonicity: $E(\Lambda(\rho)) \leq E(\rho)$ for any $\Lambda \in$ LOCC.
- Entanglement monotone, convexity, additivity, etc.
- Zoo of ent. measures [PV07, Chr06].
- Information-processing task gives precise and operationally meaningful way to quantify a given physical resource.

Beyond LOCC

- Due to the mathematical difficulty of dealing with separability and LOCC, it can be helpful to move beyond it.
- The positive partial transpose (PPT) criterion was proposed early [Per96, HHH96]
- A state $\rho_{A B}$ is PPT if

$$
T_{B}\left(\rho_{A B}\right) \geq 0
$$

where partial transpose map T_{B} for orthonormal basis $\left\{|i\rangle_{B}\right\}_{i}$ is defined as

$$
T_{B}\left(Y_{A B}\right) \equiv \sum_{i, j}\left(I _ { A } \otimes | i \rangle \langle j | _ { B }) Y _ { A B } \left(I_{A} \otimes|i\rangle\left\langle\left. j\right|_{B}\right)\right.\right.
$$

- If a state is separable, then it is PPT. Converse is not true in general.

Resource theory of NPT entanglement

- Rains proposed the resource theory of non-positive partial transpose entanglement [Rai99, Rai01]. That is, PPT states are free and non-PPT (NPT) states are resourceful.
- Free operations are the completely PPT preserving (C-PPT-P) channels. A bipartite channel $\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}$ is C-PPT-P if

$$
T_{B^{\prime}} \circ \mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}} \circ T_{B} \in \mathrm{CP}
$$

- Equivalently, the Choi operator $J_{A A^{\prime} B B^{\prime}}^{\mathcal{N}}$ for $\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}$ is PPT:

$$
T_{B B^{\prime}}\left(J_{A A^{\prime} B B^{\prime}}^{\mathcal{N}}\right) \geq 0
$$

- Key result: All LOCC bipartite channels are C-PPT-P. So then we can use this relationship to find bounds for tasks in resource theory of entanglement by using resource theory of NPT entanglement.

Logarithmic negativity

- One of the most popular measures for resource theory of NPT entanglement is the logarithmic negativity [VW02, Ple05]:

$$
E_{N}\left(\rho_{A B}\right) \equiv \log _{2}\left\|T_{B}\left(\rho_{A B}\right)\right\|_{1}
$$

- Entanglement monotone:

$$
E_{N}\left(\rho_{A B}\right) \geq \sum_{x} p(x) E_{N}\left(\rho_{A B}^{x}\right)
$$

where $\left\{p(x), \rho_{A B}^{x}\right\}_{x}$ is ensemble resulting from C-PPT-P instrument.

- Faithful on PPT states:

$$
E_{N}\left(\rho_{A B}\right)=0 \quad \Longleftrightarrow \quad \rho_{A B} \in \mathrm{PPT}
$$

- It is neither convex nor monogamous.

κ-entanglement

- Recently, the κ-entanglement measure was defined as [WW18]

$$
\begin{aligned}
E_{\kappa}\left(\rho_{A B}\right) \equiv \log _{2} \inf \{ & \operatorname{lr}\left[S_{A B}\right]: \\
& \left.-S_{A B} \leq T_{B}\left(\rho_{A B}\right) \leq S_{A B}, T_{B}\left(S_{A B}\right) \geq 0\right\}
\end{aligned}
$$

- Can be computed by semi-definite programming [WW18].
- Has a direct operational meaning in the resource theory of NPT entanglement, being equal to the exact PPT entanglement cost.
- It is an entanglement monotone, faithful on PPT states, but it is neither convex nor monogamous.
- Reduces to logarithmic negativity for all bipartite two-qubit states and bipartite bosonic Gaussian states.

Relation between log. negativity and κ-entanglement?

- Basic question is whether there is some relation between the two entanglement measures.
- Result: logarithmic negativity and κ-entanglement are extremes of a family of entanglement measures

Key quantities

- Consider
(1) $\alpha \geq 1$,
(2) a Hermitian operator $X \neq 0$, and
(3) a positive semi-definite operator $\sigma \neq 0$:
- Then define

$$
\begin{aligned}
& \mu_{\alpha}(X \| \sigma) \equiv\left\{\begin{array}{cl}
\left\|\sigma^{\frac{1-\alpha}{2 \alpha}} X \sigma^{\frac{1-\alpha}{2 \alpha}}\right\|_{\alpha} & \text { if } \operatorname{supp}(X) \subseteq \operatorname{supp}(\sigma) \\
+\infty & \text { else }
\end{array}\right. \\
& \nu_{\alpha}(X \| \sigma) \equiv \log _{2} \mu_{\alpha}(X \| \sigma)
\end{aligned}
$$

- Key properties of $\mu_{\alpha}(X \| \sigma)$ and $\nu_{\alpha}(X \| \sigma)$ can be derived from [Bei13] and [Hia16]

α-Logarithmic negativities

Definition (α-logarithmic negativity)

Let $\rho_{A B}$ be a bipartite state. Its α-logarithmic negativity defined as

$$
E_{N}^{\alpha}\left(\rho_{A B}\right) \equiv \inf _{\sigma_{A B} \in \operatorname{PPT}(A: B)} \nu_{\alpha}\left(T_{B}\left(\rho_{A B}\right) \| \sigma_{A B}\right)
$$

where $\operatorname{PPT}(A: B)$ is the set of PPT states:

$$
\operatorname{PPT}(A: B) \equiv\left\{\sigma_{A B}: \sigma_{A B}, T_{B}\left(\sigma_{A B}\right) \geq 0, \operatorname{Tr}\left[\sigma_{A B}\right]=1\right\}
$$

We now discuss properties of the α-logarithmic negativities.

Ordering

Proposition

Let $\rho_{A B}$ be a bipartite quantum state, and let $1 \leq \alpha \leq \beta$. Then

$$
E_{N}\left(\rho_{A B}\right) \leq E_{N}^{\alpha}\left(\rho_{A B}\right) \leq E_{N}^{\beta}\left(\rho_{A B}\right)
$$

Ordering

Follows from a simple generalization of [Bei13, Theorem 7]

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Then the following inequality holds for all $\beta>\alpha>1$:

$$
\frac{\alpha}{\alpha-1}\left[\nu_{\alpha}(X \| \sigma)-\log _{2}\|X\|_{1}\right] \leq \frac{\beta}{\beta-1}\left[\nu_{\beta}(X \| \sigma)-\log _{2}\|X\|_{1}\right]
$$

which implies

$$
\nu_{\alpha}(X \| \sigma) \leq \nu_{\beta}(X \| \sigma)
$$

Limits

Proposition

Let $\rho_{A B}$ be a bipartite quantum state. Then

$$
\lim _{\alpha \rightarrow 1} E_{N}^{\alpha}\left(\rho_{A B}\right)=E_{N}\left(\rho_{A B}\right)
$$

Limits

Definition (Max-logarithmic negativity)

For bipartite state $\rho_{A B}$, max-logarithmic negativity $E_{N}^{\max }\left(\rho_{A B}\right)$ defined as

$$
E_{N}^{\max }\left(\rho_{A B}\right) \equiv \inf _{\sigma_{A B} \in \operatorname{PPT}(A: B)} \nu_{\infty}\left(T_{B}\left(\rho_{A B}\right) \| \sigma_{A B}\right)
$$

and

$$
\nu_{\infty}(X \| \sigma)=D_{\max }(X \| \sigma)=\log _{2}\left\|\sigma^{-1 / 2} X \sigma^{-1 / 2}\right\|_{\infty}
$$

Proposition

Let $\rho_{A B}$ be a bipartite quantum state. Then

$$
E_{\kappa}\left(\rho_{A B}\right)=E_{N}^{\max }\left(\rho_{A B}\right)=\lim _{\alpha \rightarrow \infty} E_{N}^{\alpha}\left(\rho_{A B}\right)
$$

Collapse

Proposition

If $\rho_{A B}$ satisfies the condition $T_{B}\left(\left|T_{B}\left(\rho_{A B}\right)\right|\right) \geq 0$, then all α-logarithmic negativities are equal; i.e., the following equality holds for all $\alpha \geq 1$:

$$
E_{N}^{\alpha}\left(\rho_{A B}\right)=E_{N}\left(\rho_{A B}\right)
$$

All of the following satisfy $T_{B}\left(\left|T_{B}\left(\rho_{A B}\right)\right|\right) \geq 0$:
(1) pure states [ADMVW02],
(2) two-qubit states [lsh04],
(3) Werner states [APE03], and
(9) bosonic Gaussian states [APE03]

Thus, conclude that collapse above holds for such states.

C-PPT-P quantum instruments

Definition

A C-PPT-P quantum instrument consists of the collection

$$
\left\{\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}\right\}_{X}
$$

where
(1) each $\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}$ is $C P$,
(2) the map $T_{B^{\prime}} \circ \mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x} \circ T_{B}$ is CP , and
(3) the sum map $\sum_{x} \mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}$ is TP.

Entanglement monotone

Theorem (Entanglement monotone)

Let $\left\{\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}\right\}_{x}$ be a C-PPT-P quantum instrument, and $\rho_{A B}$ a bipartite state. Then α-logarithmic negativity is an entanglement monotone; i.e., the following inequality holds for all $\alpha \geq 1$:

$$
E_{N}^{\alpha}\left(\rho_{A B}\right) \geq \sum_{x: p(x)>0} p(x) E_{N}^{\alpha}\left(\rho_{A^{\prime} B^{\prime}}^{x}\right)
$$

where

$$
\begin{aligned}
p(x) & \equiv \operatorname{Tr}\left[\mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}\left(\rho_{A B}\right)\right], \\
\rho_{A^{\prime} B^{\prime}}^{x} & \equiv \frac{1}{p(x)} \mathcal{N}_{A B \rightarrow A^{\prime} B^{\prime}}^{x}\left(\rho_{A B}\right) .
\end{aligned}
$$

Entanglement monotone proof

Follows from a simple generalization of [Bei13, Theorem 6]

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Let \mathcal{P} be a positive and trace-non-increasing map. Then the following inequality holds for all $\alpha \geq 1$:

$$
\nu_{\alpha}(X \| \sigma) \geq \nu_{\alpha}(\mathcal{P}(X) \| \mathcal{P}(\sigma))
$$

Entanglement monotone proof

Entanglement monotone property also follows from

Lemma

$$
\text { Let } Y_{X B} \equiv \sum_{x} p(x)|x\rangle\left\langle\left. x\right|_{X} \otimes Y_{B}^{x}, \quad \sigma_{X B} \equiv \sum_{x} q(x) \mid x\right\rangle\left\langle\left. x\right|_{X} \otimes \sigma_{B}^{x}\right.
$$

where $\left\{Y_{B}^{x}\right\}_{x}$ is a set of Hermitian operators, $\{p(x)\}_{x}$ is a probability distribution, $\left\{\sigma_{B}^{x}\right\}$ is a set of positive definite operators, and $\{q(x)\}_{x}$ is a set of strictly positive reals. Then for $\alpha \geq 1$,

$$
\nu_{\alpha}\left(Y_{X B} \| \sigma_{X B}\right) \geq \sum_{x} p(x) \nu_{\alpha}\left(Y_{B}^{x} \| \sigma_{B}^{\times}\right)+\left(\frac{\alpha-1}{\alpha}\right) D(p \| q)
$$

where $D(p \| q):=\sum_{x} p(x) \log _{2}(p(x) / q(x))$ is the classical relative entropy.

Computable by convex optimization

Proposition

Let $\rho_{A B}$ be a bipartite state and $\alpha \geq 1$. Then the α-logarithmic negativity $E_{N}^{\alpha}\left(\rho_{A B}\right)$ can be calculated by convex optimization.

The above proposition follows from

Lemma

Let $X \neq 0$ be a Hermitian operator, and let σ be a positive definite operator. Then for all $\alpha \geq 1$, the following function is convex:

$$
\sigma \mapsto\left[\mu_{\alpha}(X \| \sigma)\right]^{\alpha}
$$

The above lemma follows directly from [Hia16, Theorem 5.2] (see also brief remarks stated before [Hia16, Theorem 5.3])

Faithfulness

Proposition (Faithfulness)

Let $\rho_{A B}$ be a bipartite quantum state, and let $\alpha \geq 1$. Then

$$
E_{N}^{\alpha}\left(\rho_{A B}\right) \geq 0
$$

and

$$
E_{N}^{\alpha}\left(\rho_{A B}\right)=0 \quad \Longleftrightarrow \quad \rho_{A B} \in \operatorname{PPT}(A: B)
$$

No convexity

By picking

$$
\begin{aligned}
& \rho_{A B}^{1} \equiv \Phi_{A B}^{2}, \quad \rho_{A B}^{2} \equiv \frac{1}{2}\left(|00\rangle\left\langle\left. 00\right|_{A B}+\mid 11\right\rangle\left\langle\left. 11\right|_{A B}\right)\right. \\
& \bar{\rho}_{A B}
\end{aligned}
$$

we find for all $\alpha \in[1, \infty]$ that

$$
\begin{aligned}
& E_{N}^{\alpha}\left(\rho_{A B}^{1}\right)=1, \quad E_{N}^{\alpha}\left(\rho_{A B}^{2}\right)=0 \\
& E_{N}^{\alpha}\left(\bar{\rho}_{A B}\right)=\log _{2} \frac{3}{2}
\end{aligned}
$$

which implies no convexity:

$$
E_{N}^{\alpha}\left(\bar{\rho}_{A B}\right)>\frac{1}{2}\left[E_{N}^{\alpha}\left(\rho_{A B}^{1}\right)+E_{N}^{\alpha}\left(\rho_{A B}^{2}\right)\right]
$$

Definition of monogamy

An entanglement measure E is monogamous [CKW00, Ter04, KW04] if the following inequality holds for all tripartite states $\rho_{A B C}$:

$$
E\left(\rho_{A: B}\right)+E\left(\rho_{A: C}\right) \leq E\left(\rho_{A: B C}\right)
$$

where the bipartition is indicated by a colon.

No monogamy

- As a consequence of the counterexample given in [WW18, Proposition 7], it follows that the α-logarithmic negativity is not generally monogamous for any choice of $\alpha \in[1, \infty]$.
- Indeed, consider the following state of three qubits:

$$
|\psi\rangle_{A B C} \equiv \frac{1}{2}\left(|000\rangle_{A B C}+|011\rangle_{A B C}+\sqrt{2}|110\rangle_{A B C}\right)
$$

Then

$$
E_{N}^{\alpha}\left(\psi_{A: B}\right)+E_{N}^{\alpha}\left(\psi_{A: C}\right)>E_{N}^{\alpha}\left(\psi_{A: B C}\right)
$$

Additivity?

Given tensor-product state $\omega_{A_{1} A_{2} B_{1} B_{2}}=\rho_{A_{1} B_{1}} \otimes \tau_{A_{2} B_{2}}$.

- Logarithmic negativity is additive [VW02]:

$$
E_{N}\left(\omega_{A_{1} A_{2}: B_{1} B_{2}}\right)=E_{N}\left(\rho_{A_{1}: B_{1}}\right)+E_{N}\left(\tau_{A_{2}: B_{2}}\right)
$$

- So is κ-entanglement [WW18]:

$$
E_{\kappa}\left(\omega_{A_{1} A_{2}: B_{1} B_{2}}\right)=E_{\kappa}\left(\rho_{A_{1}: B_{1}}\right)+E_{\kappa}\left(\tau_{A_{2}: B_{2}}\right) .
$$

- For α-logarithmic negativity, subadditivity holds for $\alpha \in(1, \infty)$:

$$
E_{N}^{\alpha}\left(\omega_{A_{1} A_{2}: B_{1} B_{2}}\right) \leq E_{N}^{\alpha}\left(\rho_{A_{1}: B_{1}}\right)+E_{N}^{\alpha}\left(\tau_{A_{2}: B_{2}}\right)
$$

What about superadditivity?

Generalization to channels

- Logarithmic negativity of a channel defined as [HW01]

$$
E_{N}(\mathcal{N}) \equiv \log _{2}\left\|T_{B} \circ \mathcal{N}_{A \rightarrow B}\right\|_{\diamond}
$$

- Diamond norm of Herm.-preserving map $\mathcal{M}_{A \rightarrow B}$ defined as [Kit97]

$$
\left\|\mathcal{M}_{A \rightarrow B}\right\|_{\diamond} \equiv \sup _{\psi_{R A}}\left\|\mathcal{M}_{A \rightarrow B}\left(\psi_{R A}\right)\right\|_{1}
$$

- Can write the logarithmic negativity of a quantum channel as an optimized version of the logarithmic negativity of quantum states:

$$
E_{N}(\mathcal{N})=\sup _{\psi_{R A}} E_{N}\left(\omega_{R B}\right)
$$

where $\omega_{R B} \equiv \mathcal{N}_{A \rightarrow B}\left(\psi_{R A}\right)$.

α-Logarithmic negativity of a channel

Definition (α-log. negativity of a channel)

The α-logarithmic negativity of a quantum channel is defined for $\alpha \geq 1$ as

$$
E_{N}^{\alpha}(\mathcal{N})=\sup _{\psi_{R A}} E_{N}^{\alpha}\left(\omega_{R B}\right)
$$

with $\omega_{R B} \equiv \mathcal{N}_{A \rightarrow B}\left(\psi_{R A}\right)$.

Recover κ-entanglement of a channel as a special case $(\alpha \rightarrow \infty)$, which is equal to the exact PPT simulation cost of a quantum channel (parallel or sequential simulation) [WW18]

Conclusion

- α-logarithmic negativities are a family of entanglement monotones that include logarithmic negativity and κ-entanglement
- Entanglement monotone property follows from techniques of [Bei13]
- They are ordered, faithful, and computable by convex optimization
- They are neither convex nor monogamous

Going forward

- The concept put forward here can be generalized.
- Idea is to compare an unphysical object versus a physical one to obtain a useful information, distinguishability, or entanglement measure
- In our case, we compare the partial transpose of $\rho_{A B}$ to the set of PPT states using $\nu_{\alpha}(X \| \sigma)$.

Going forward

Yesterday, we saw an interesting re-expression of diamond norm, using the same concept:

Asymptotic Continuity

$D_{\mathfrak{F}}$ and $E_{\mathfrak{F}}$ are asymptotically continuous.

$$
\begin{aligned}
& \left|D_{\mathfrak{F}}\left(\mathcal{N}_{A \rightarrow B}\right)-D_{\mathfrak{F}}\left(\mathcal{M}_{A \rightarrow B}\right)\right| \leq f\left(\|\mathcal{N}-\mathcal{M}\|_{0}\right) \log |A B| \\
& \lim _{\epsilon \rightarrow 0^{+}} f(\epsilon)=0 \\
& \|\mathcal{N}-\mathcal{M}\|_{0}:=\max _{\psi_{\mathbb{R}}}\left\|\mathcal{N}_{A \rightarrow B}\left(\psi_{R A}\right)-\mathcal{M}_{A \rightarrow B}\left(\psi_{R A}\right)\right\|_{1}
\end{aligned}
$$

Key observation:

$$
\log _{2}\|\mathcal{N}-\mathcal{M}\|_{0}-1=\operatorname{mincPTP}_{\varepsilon \in \operatorname{CPTP}(A \rightarrow B)} D_{\max }(\mathcal{N}-\mathcal{M} \| \varepsilon)
$$

Thanks!

References I

[ADMVW02] Koenraad Audenaert, Bart De Moor, Karl Gerd H. Vollbrecht, and Reinhard F. Werner. Asymptotic relative entropy of entanglement for orthogonally invariant states. Physical Review A, 66(3):032310, September 2002. arXiv:quant-ph/0204143.
[APE03] Koenraad Audenaert, Martin B. Plenio, and Jens Eisert. Entanglement cost under positive-partial-transpose-preserving operations. Physical Review Letters, 90(2):027901, January 2003. arXiv:quant-ph/0207146.
[Bei13] Salman Beigi. Sandwiched Rényi divergence satisfies data processing inequality. Journal of Mathematical Physics, 54(12):122202, December 2013. arXiv:1306.5920.
[Chr06] Matthias Christandl. The Structure of Bipartite Quantum States: Insights from Group Theory and Cryptography. PhD thesis, University of Cambridge, April 2006. arXiv:quant-ph/0604183.
[CKW00] Valerie Coffman, Joydip Kundu, and William K. Wootters. Distributed entanglement. Physical Review A, 61(5):052306, April 2000. arXiv:quant-ph/9907047.

References II

[CLM ${ }^{+}$14] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter. Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328(1):303-326, May 2014. arXiv:1210.4583.
[HHH96] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1-2):1-8, November 1996. arXiv:quant-ph/9605038.
[Hia16] Fumio Hiai. Concavity of certain matrix trace and norm functions. II. Linear Algebra and its Applications, 496:193-220, May 2016. arXiv:1507.00853.
[HW01] Alexander S. Holevo and Reinhard F. Werner. Evaluating capacities of bosonic Gaussian channels. Physical Review A, 63(3):032312, February 2001. arXiv:quant-ph/9912067.
[Ish04] Satoshi Ishizaka. Binegativity and geometry of entangled states in two qubits. Physical Review A, 69(2):020301(R), February 2004. arXiv:quant-ph/0308056.

References III

[Kit97] Alexei Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191-1249, December 1997.
[KW04] Masato Koashi and Andreas Winter. Monogamy of quantum entanglement and other correlations. Physical Review A, 69(2):022309, February 2004. arXiv:quant-ph/0310037.
[Per96] Asher Peres. Separability criterion for density matrices. Physical Review Letters, 77(8):1413-1415, August 1996. arXiv:quant-ph/9604005.
[Ple05] Martin B. Plenio. Logarithmic negativity: A full entanglement monotone that is not convex. Physical Review Letters, 95(9):090503, August 2005. arXiv:quant-ph/0505071.
[PV07] Martin B. Plenio and Shashank S. Virmani. An introduction to entanglement measures. Quantum Information and Computation, $7(1): 1-51,2007$. arXiv:quant-ph/0504163.
[Rai99] Eric M. Rains. Bound on distillable entanglement. Physical Review A, 60(1):179-184, July 1999. arXiv:quant-ph/9809082.

References IV

[Rai01] Eric M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47(7):2921-2933, November 2001. arXiv:quant-ph/0008047.
[Ter04] Barbara M. Terhal. Is entanglement monogamous? IBM Journal of Research and Development, 48(1):71-78, 2004. arXiv:quant-ph/0307120.
[VW02] Guifre Vidal and Reinhard F. Werner. Computable measure of entanglement. Physical Review A, 65(3):032314, February 2002. arXiv:quant-ph/0102117.
[WW18] Xin Wang and Mark M. Wilde. Exact entanglement cost of quantum states and channels under PPT-preserving operations. September 2018. arXiv:1809.09592.

