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Motivation: Entanglement and its manipulation

Separable state: ρAB =
∑

i piρ
i
A ⊗ ρiB .

Entangled state: ρAB 6=
∑

i piρ
i
A ⊗ ρiB .

The most natural set of free operations for entanglement manipulation
consists of local operations and classical communication
(LOCC), which has a complex structure [CLM+14].

Entangled states cannot be created by LOCC.

Inspired the resource theory framework: free states + free operations.

The seminal ideas coming from it are influencing diverse areas:
quantum thermodynamics, quantum coherence and superposition,
non-Gaussianity, magic states...
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Quantifying entanglement

Entanglement is a key physical resource in quantum information,
quantum computation, and quantum cryptography.

A quantitative theory is highly desirable to fully exploit the power of
entanglement.

Entanglement measure E

Faithfulness: E (ρ) = 0 if and only if ρ is separable.

LOCC monotonicity: E (Λ(ρ)) ≤ E (ρ) for any Λ ∈ LOCC.

Entanglement monotone, convexity, additivity, etc.

Zoo of ent. measures [PV07, Chr06].

Information-processing task gives precise and operationally meaningful
way to quantify a given physical resource.
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Beyond LOCC

Due to the mathematical difficulty of dealing with separability and
LOCC, it can be helpful to move beyond it.

The positive partial transpose (PPT) criterion was proposed early
[Per96, HHH96]

A state ρAB is PPT if
TB(ρAB) ≥ 0,

where partial transpose map TB for orthonormal basis {|i〉B}i is
defined as

TB(YAB) ≡
∑
i ,j

(IA ⊗ |i〉〈j |B)YAB (IA ⊗ |i〉〈j |B) ,

If a state is separable, then it is PPT. Converse is not true in general.
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Resource theory of NPT entanglement

Rains proposed the resource theory of non-positive partial
transpose entanglement [Rai99, Rai01]. That is, PPT states are
free and non-PPT (NPT) states are resourceful.

Free operations are the completely PPT preserving (C-PPT-P)
channels. A bipartite channel NAB→A′B′ is C-PPT-P if

TB′ ◦ NAB→A′B′ ◦ TB ∈ CP

Equivalently, the Choi operator JNAA′BB′ for NAB→A′B′ is PPT:

TBB′(J
N
AA′BB′) ≥ 0

Key result: All LOCC bipartite channels are C-PPT-P. So then we can
use this relationship to find bounds for tasks in resource theory of
entanglement by using resource theory of NPT entanglement.
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Logarithmic negativity

One of the most popular measures for resource theory of NPT
entanglement is the logarithmic negativity [VW02, Ple05]:

EN(ρAB) ≡ log2 ‖TB(ρAB)‖1 ,

Entanglement monotone:

EN(ρAB) ≥
∑
x

p(x)EN(ρxAB)

where {p(x), ρxAB}x is ensemble resulting from C-PPT-P instrument.

Faithful on PPT states:

EN(ρAB) = 0 ⇐⇒ ρAB ∈ PPT

It is neither convex nor monogamous.
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κ-entanglement

Recently, the κ-entanglement measure was defined as [WW18]

Eκ(ρAB) ≡ log2 inf{Tr[SAB ] :

− SAB ≤ TB(ρAB) ≤ SAB , TB(SAB) ≥ 0}.

Can be computed by semi-definite programming [WW18].

Has a direct operational meaning in the resource theory of NPT
entanglement, being equal to the exact PPT entanglement cost.

It is an entanglement monotone, faithful on PPT states, but it is
neither convex nor monogamous.

Reduces to logarithmic negativity for all bipartite two-qubit states and
bipartite bosonic Gaussian states.
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Relation between log. negativity and κ-entanglement?

Basic question is whether there is some relation between the two
entanglement measures.

Result: logarithmic negativity and κ-entanglement are extremes of a
family of entanglement measures
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Key quantities

Consider

1 α ≥ 1,
2 a Hermitian operator X 6= 0, and
3 a positive semi-definite operator σ 6= 0:

Then define

µα(X‖σ) ≡

{ ∥∥∥σ 1−α
2α Xσ

1−α
2α

∥∥∥
α

if supp(X ) ⊆ supp(σ)

+∞ else
,

να(X‖σ) ≡ log2 µα(X‖σ),

Key properties of µα(X‖σ) and να(X‖σ) can be derived from [Bei13]
and [Hia16]
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α-Logarithmic negativities

Definition (α-logarithmic negativity)

Let ρAB be a bipartite state. Its α-logarithmic negativity defined as

EαN(ρAB) ≡ inf
σAB∈PPT(A:B)

να(TB(ρAB)‖σAB),

where PPT(A : B) is the set of PPT states:

PPT(A : B) ≡ {σAB : σAB ,TB(σAB) ≥ 0, Tr[σAB ] = 1} .

We now discuss properties of the α-logarithmic negativities.

Mark M. Wilde (LSU) 10 / 35



Ordering

Proposition

Let ρAB be a bipartite quantum state, and let 1 ≤ α ≤ β. Then

EN(ρAB) ≤ EαN(ρAB) ≤ EβN(ρAB).
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Ordering

Follows from a simple generalization of [Bei13, Theorem 7]

Lemma

Let X 6= 0 be a Hermitian operator, and let σ be a positive definite
operator. Then the following inequality holds for all β > α > 1:

α

α− 1
[να(X‖σ)− log2 ‖X‖1] ≤ β

β − 1
[νβ(X‖σ)− log2 ‖X‖1]

which implies
να(X‖σ) ≤ νβ(X‖σ).
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Limits

Proposition

Let ρAB be a bipartite quantum state. Then

lim
α→1

EαN(ρAB) = EN(ρAB).
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Limits

Definition (Max-logarithmic negativity)

For bipartite state ρAB , max-logarithmic negativity Emax
N (ρAB) defined as

Emax
N (ρAB) ≡ inf

σAB∈PPT(A:B)
ν∞(TB(ρAB)‖σAB),

and
ν∞(X‖σ) = Dmax(X‖σ) = log2

∥∥∥σ−1/2Xσ−1/2∥∥∥
∞
.

Proposition

Let ρAB be a bipartite quantum state. Then

Eκ(ρAB) = Emax
N (ρAB) = lim

α→∞
EαN(ρAB).
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Collapse

Proposition

If ρAB satisfies the condition TB(|TB(ρAB)|) ≥ 0, then all α-logarithmic
negativities are equal; i.e., the following equality holds for all α ≥ 1:

EαN(ρAB) = EN(ρAB).

All of the following satisfy TB(|TB(ρAB)|) ≥ 0:

1 pure states [ADMVW02],

2 two-qubit states [Ish04],

3 Werner states [APE03], and

4 bosonic Gaussian states [APE03]

Thus, conclude that collapse above holds for such states.
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C-PPT-P quantum instruments

Definition

A C-PPT-P quantum instrument consists of the collection

{N x
AB→A′B′}x ,

where

1 each N x
AB→A′B′ is CP,

2 the map TB′ ◦ N x
AB→A′B′ ◦ TB is CP, and

3 the sum map
∑

x N x
AB→A′B′ is TP.
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Entanglement monotone

Theorem (Entanglement monotone)

Let {N x
AB→A′B′}x be a C-PPT-P quantum instrument, and ρAB a bipartite

state. Then α-logarithmic negativity is an entanglement monotone; i.e.,
the following inequality holds for all α ≥ 1:

EαN(ρAB) ≥
∑

x :p(x)>0

p(x)EαN(ρxA′B′),

where

p(x) ≡ Tr[N x
AB→A′B′(ρAB)],

ρxA′B′ ≡
1

p(x)
N x

AB→A′B′(ρAB).
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Entanglement monotone proof

Follows from a simple generalization of [Bei13, Theorem 6]

Lemma

Let X 6= 0 be a Hermitian operator, and let σ be a positive definite
operator. Let P be a positive and trace-non-increasing map. Then the
following inequality holds for all α ≥ 1:

να(X‖σ) ≥ να(P(X )‖P(σ)).
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Entanglement monotone proof

Entanglement monotone property also follows from

Lemma

Let YXB ≡
∑
x

p(x)|x〉〈x |X ⊗ Y x
B , σXB ≡

∑
x

q(x)|x〉〈x |X ⊗ σxB ,

where {Y x
B}x is a set of Hermitian operators, {p(x)}x is a probability

distribution, {σxB} is a set of positive definite operators, and {q(x)}x is a
set of strictly positive reals. Then for α ≥ 1,

να(YXB‖σXB) ≥
∑
x

p(x)να(Y x
B‖σxB) +

(
α− 1

α

)
D(p‖q),

where D(p‖q) :=
∑

x p(x) log2(p(x)/q(x)) is the classical relative entropy.
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Computable by convex optimization

Proposition

Let ρAB be a bipartite state and α ≥ 1. Then the α-logarithmic negativity
EαN(ρAB) can be calculated by convex optimization.

The above proposition follows from

Lemma

Let X 6= 0 be a Hermitian operator, and let σ be a positive definite
operator. Then for all α ≥ 1, the following function is convex:

σ 7→ [µα(X‖σ)]α .

The above lemma follows directly from [Hia16, Theorem 5.2] (see also
brief remarks stated before [Hia16, Theorem 5.3])
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Faithfulness

Proposition (Faithfulness)

Let ρAB be a bipartite quantum state, and let α ≥ 1. Then

EαN(ρAB) ≥ 0

and
EαN(ρAB) = 0 ⇐⇒ ρAB ∈ PPT(A : B).
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No convexity

By picking

ρ1AB ≡ Φ2
AB , ρ2AB ≡

1

2
(|00〉〈00|AB + |11〉〈11|AB) ,

ρAB ≡
1

2

(
ρ1AB + ρ2AB

)
,

we find for all α ∈ [1,∞] that

EαN(ρ1AB) = 1, EαN(ρ2AB) = 0,

EαN(ρAB) = log2
3

2
,

which implies no convexity:

EαN(ρAB) >
1

2

[
EαN(ρ1AB) + EαN(ρ2AB)

]
.
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Definition of monogamy

An entanglement measure E is monogamous [CKW00, Ter04, KW04] if
the following inequality holds for all tripartite states ρABC :

E (ρA:B) + E (ρA:C ) ≤ E (ρA:BC ),

where the bipartition is indicated by a colon.
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No monogamy

As a consequence of the counterexample given in [WW18,
Proposition 7], it follows that the α-logarithmic negativity is not
generally monogamous for any choice of α ∈ [1,∞].

Indeed, consider the following state of three qubits:

|ψ〉ABC ≡
1

2

(
|000〉ABC + |011〉ABC +

√
2|110〉ABC

)
.

Then

EαN(ψA:B) + EαN(ψA:C ) > EαN(ψA:BC ),
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Additivity?

Given tensor-product state ωA1A2B1B2 = ρA1B1 ⊗ τA2B2 .

Logarithmic negativity is additive [VW02]:

EN(ωA1A2:B1B2) = EN(ρA1:B1) + EN(τA2:B2).

So is κ-entanglement [WW18]:

Eκ(ωA1A2:B1B2) = Eκ(ρA1:B1) + Eκ(τA2:B2).

For α-logarithmic negativity, subadditivity holds for α ∈ (1,∞):

EαN(ωA1A2:B1B2) ≤ EαN(ρA1:B1) + EαN(τA2:B2).

What about superadditivity?
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Generalization to channels

Logarithmic negativity of a channel defined as [HW01]

EN(N ) ≡ log2 ‖TB ◦ NA→B‖� .

Diamond norm of Herm.-preserving map MA→B defined as [Kit97]

‖MA→B‖� ≡ sup
ψRA

‖MA→B(ψRA)‖1 ,

Can write the logarithmic negativity of a quantum channel as an
optimized version of the logarithmic negativity of quantum states:

EN(N ) = sup
ψRA

EN(ωRB),

where ωRB ≡ NA→B(ψRA).
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α-Logarithmic negativity of a channel

Definition (α-log. negativity of a channel)

The α-logarithmic negativity of a quantum channel is defined for α ≥ 1 as

EαN(N ) = sup
ψRA

EαN(ωRB),

with ωRB ≡ NA→B(ψRA).

Recover κ-entanglement of a channel as a special case (α→∞), which
is equal to the exact PPT simulation cost of a quantum channel (parallel
or sequential simulation) [WW18]
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Conclusion

α-logarithmic negativities are a family of entanglement monotones
that include logarithmic negativity and κ-entanglement

Entanglement monotone property follows from techniques of [Bei13]

They are ordered, faithful, and computable by convex optimization

They are neither convex nor monogamous
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Going forward

The concept put forward here can be generalized.

Idea is to compare an unphysical object versus a physical one to
obtain a useful information, distinguishability, or entanglement
measure

In our case, we compare the partial transpose of ρAB to the set of
PPT states using να(X‖σ).
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Going forward

Yesterday, we saw an interesting re-expression of diamond norm, using the
same concept:
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Thanks!
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