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Motivation: Entanglement and its manipulation

o Separable state: pag = Y, pipls ® pls.
o Entangled state: pag # >_; pipy @ pls.

@ The most natural set of free operations for entanglement manipulation
consists of local operations and classical communication
(LOCC), which has a complex structure [CLM*14].

@ Entangled states cannot be created by LOCC.
@ Inspired the resource theory framework: free states -+ free operations.

@ The seminal ideas coming from it are influencing diverse areas:
quantum thermodynamics, quantum coherence and superposition,
non-Gaussianity, magic states...
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Quantifying entanglement

Entanglement is a key physical resource in quantum information,
quantum computation, and quantum cryptography.

A quantitative theory is highly desirable to fully exploit the power of
entanglement.

Entanglement measure E
o Faithfulness: E(p) = 0 if and only if p is separable.

e LOCC monotonicity: E(A(p)) < E(p) for any A € LOCC.
e Entanglement monotone, convexity, additivity, etc.

@ Zoo of ent. measures [PV07, Chr06].

@ Information-processing task gives precise and operationally meaningful
way to quantify a given physical resource.
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Beyond LOCC

@ Due to the mathematical difficulty of dealing with separability and
LOCC, it can be helpful to move beyond it.

@ The positive partial transpose (PPT) criterion was proposed early
[Per96, HHHI6]

@ A state ppg is PPT if

Te(pag) > 0,
where partial transpose map Tg for orthonormal basis {|i)g}; is
defined as
Ta(Yag) =Y (la®|i)ls) Yas (la®|i){jls),

ij
o If a state is separable, then it is PPT. Converse is not true in general.
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Resource theory of NPT entanglement

@ Rains proposed the resource theory of non-positive partial
transpose entanglement [Rai99, Rai01]. That is, PPT states are
free and non-PPT (NPT) states are resourceful.

@ Free operations are the completely PPT preserving (C-PPT-P)
channels. A bipartite channel Nag_,ag is C-PPT-P if

TB/ ONABHA/B/ (@) TB & CP

e Equivalently, the Choi operator J,/A\Q\'BB/ for Nap_a g is PPT:

T (SAwps) > 0

o Key result: All LOCC bipartite channels are C-PPT-P. So then we can
use this relationship to find bounds for tasks in resource theory of
entanglement by using resource theory of NPT entanglement.
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Logarithmic negativity

@ One of the most popular measures for resource theory of NPT
entanglement is the logarithmic negativity [VW02, Ple05]:

En(pag) = logy [| Te(pas)lly

@ Entanglement monotone:

En(pas) =Y p(x)En(pig)

where {p(x), plig}x is ensemble resulting from C-PPT-P instrument.
e Faithful on PPT states:
EN(PAB) =0 s PAB € PPT

@ It is neither convex nor monogamous.
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r-entanglement

@ Recently, the x-entanglement measure was defined as [WW18]

Ex(paB) = logy inf{Tr[Sap] :
— Sag < Tg(paB) < Sas, Te(Sag) > 0}.

e Can be computed by semi-definite programming [WW18].

@ Has a direct operational meaning in the resource theory of NPT
entanglement, being equal to the exact PPT entanglement cost.

@ It is an entanglement monotone, faithful on PPT states, but it is
neither convex nor monogamous.

@ Reduces to logarithmic negativity for all bipartite two-qubit states and
bipartite bosonic Gaussian states.
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Relation between log. negativity and k-entanglement?

@ Basic question is whether there is some relation between the two
entanglement measures.

o Result: logarithmic negativity and k-entanglement are extremes of a
family of entanglement measures
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@ Consider

Qa>1
© a Hermitian operator X # 0, and
© a positive semi-definite operator o # 0:

@ Then define
HUIETQXU% if supp(X) C supp(o)

+00 else

pa(Xllo) = {

va(X||o) = logs pra(X||0),

o Key properties of pq(X||o) and vo(X||o) can be derived from [Beil3]
and [Hial6]
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a-Logarithmic negativities

Definition («a-logarithmic negativity)

Let pas be a bipartite state. Its a-logarithmic negativity defined as

ES = inf T
N(paB) UABGSQT(A:B)%( s(paB)|loas),

where PPT(A : B) is the set of PPT states:

PPT(A: B) = {oag : 045, Te(0as) > 0, Tr[oag] =1}.

We now discuss properties of the a-logarithmic negativities.
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Proposition

Let pag be a bipartite quantum state, and let 1 < o < 3. Then

En(pag) < Ef(pag) < En(pas).
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Ordering

Follows from a simple generalization of [Beil3, Theorem 7]

Lemma

Let X £ 0 be a Hermitian operator, and let o be a positive definite
operator. Then the following inequality holds for all > o > 1:

1 [va(Xl|o) — loga [IX|1y] < 27 [va(Xl|o) — log, [1X]],]

B—1

which implies
va(X|lo) < vp(X]lo).
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Proposition

Let pag be a bipartite quantum state. Then

lim EN(pag) = En(pag)-
a—1
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Definition (Max-logarithmic negativity)

For bipartite state pag, max-logarithmic negativity E5*(pag) defined as

E = inf o T, ,
N (paB) S BN (Te(pas)lloas)

and

Veo(X[|0) = Dimax(X||0) = log, Ha—1/2xo——1/2Hoo.

Proposition

Let pps be a bipartite quantum state. Then

Ex(pas) = EX™(pas) = |im Ef(pag).
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Collapse

Proposition

If pap satisfies the condition Tg(|Tg(pas)|) > 0, then all a-logarithmic
negativities are equal; i.e., the following equality holds for all o > 1:

En(paB) = En(pas).

All of the following satisfy Tg(|Ts(pag)|) > 0:
@ pure states [ADMVW02],
@ two-qubit states [Ish04],
© Werner states [APE03], and
© bosonic Gaussian states [APEOQ3]

Thus, conclude that collapse above holds for such states.
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C-PPT-P quantum instruments

A C-PPT-P quantum instrument consists of the collection

{NXB—)A’B’ }X7

where
® each N5, 4 is CP,
Q the map Tg o N5 4 0 Tg is CP, and
© the sum map >, NSg 1 is TP.
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Entanglement monotone

Theorem (Entanglement monotone)

Let {Ng_ o g }x be a C-PPT-P quantum instrument, and pag a bipartite
state. Then a-logarithmic negativity is an entanglement monotone; i.e.,
the following inequality holds for all oo > 1:

En(pa) = > p(X)ER (i),
x:p(x)>0

where

p(x) = TrNag_ap(paB)],
1

P = mNZB—)A’B’ (pag)-
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Entanglement monotone proof

Follows from a simple generalization of [Beil3, Theorem 6]

Lemma

Let X £ 0 be a Hermitian operator, and let o be a positive definite
operator. Let P be a positive and trace-non-increasing map. Then the
following inequality holds for all o > 1:

va(X||o) = va(P(X)[|P(0)).
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Entanglement monotone proof

Entanglement monotone property also follows from

Lemma

Let Yxg = Zp W) (xIx ® Y3,  oxa =Y q(x)|x)(x[x ® o,

X

where { YJ}« is a set of Hermitian operators, {p(x)}, is a probability
distribution, {c}} is a set of positive definite operators, and {q(x)}x is a
set of strictly positive reals. Then for a > 1,

e(Vialloxe) = 3 p0ova(Yilog) + (“7 ) (ela)

where D(p||q) := >, p(x) logo(p(x)/q(x)) is the classical relative entropy.
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Computable by convex optimization

Proposition

Let pag be a bipartite state and o > 1. Then the a-logarithmic negativity
Ef(paB) can be calculated by convex optimization.

The above proposition follows from

Let X # 0 be a Hermitian operator, and let o be a positive definite
operator. Then for all & > 1, the following function is convex:

o = [pa(X]|0)]*

The above lemma follows directly from [Hial6, Theorem 5.2] (see also
brief remarks stated before [Hial6, Theorem 5.3])
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Faithfulness

Proposition (Faithfulness)

Let pag be a bipartite quantum state, and let o > 1. Then

En(pag) >0

and
En(pag) = <  pag € PPT(A: B).
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By picking
1
pag =g, Pag = 5 (100)(00[ag + [11)(11]aB),
_ 1
Pag = 5 (Pas + Pag)

we find for all a € [1, o0] that

En(pag) = 1, En(pas) =0,

which implies no convexity:
o f— 1 (0% (o4
Ex(Pag) > 5 [ER(pag) + Eri(ras)] -
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Definition of monogamy

An entanglement measure E is monogamous [CKWO00, Ter04, KW04] if
the following inequality holds for all tripartite states pagc:

E(pa:) + E(pa.c) < E(pasc),

where the bipartition is indicated by a colon.
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@ As a consequence of the counterexample given in [WW18,
Proposition 7], it follows that the a-logarithmic negativity is not
generally monogamous for any choice of «a € [1, o).

@ Indeed, consider the following state of three qubits:

1
[V)aBCc = 5 (!000>ABC + [011) agc + \6\110>ABC) .

Then

En(a.B) + EN(Ya.c) > EN(Ya:Bc),
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Given tensor-product state wa, A4,8,B, = PA;B; @ TAB,-

e Logarithmic negativity is additive [VWO02]:
En(waay:88,) = En(pay:B,) + En(Tay:B,)-
@ So is k-entanglement [WW18]:

Ex(waAy:8:8,) = Ex(pay:B) + Ex(7a,:8,)-

e For a-logarithmic negativity, subadditivity holds for a € (1, 00):

E/(\)/[(WA1A2:8182) < Eﬁ(pAllBl) + Eﬁ(TA2:B2)'

What about superadditivity?
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Generalization to channels

e Logarithmic negativity of a channel defined as [HWO01]
En(N) = log, || Te o Nasssl, -
e Diamond norm of Herm.-preserving map M_, g defined as [Kit97]

[Ma-sll, = sup[[Mase(¥ra)ll;
A

YR

@ Can write the logarithmic negativity of a quantum channel as an
optimized version of the logarithmic negativity of quantum states:

EN(N) = sup EN(wRB),

YRA

where WRB = NAﬁB('lﬂRA).
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a-Logarithmic negativity of a channel

Definition (a-log. negativity of a channel)

The a-logarithmic negativity of a quantum channel is defined for a > 1 as

EfN(N) = sup Efj(wrs),

YRA

with wrg = NA—)B(wRA)-

Recover x-entanglement of a channel as a special case (@ — o0), which
is equal to the exact PPT simulation cost of a quantum channel (parallel
or sequential simulation) [WW18]

Mark M. Wilde (LSU) ES



Conclusion

@ a-logarithmic negativities are a family of entanglement monotones
that include logarithmic negativity and k-entanglement

e Entanglement monotone property follows from techniques of [Beil3]
@ They are ordered, faithful, and computable by convex optimization

@ They are neither convex nor monogamous
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Going forward

@ The concept put forward here can be generalized.

@ ldea is to compare an unphysical object versus a physical one to
obtain a useful information, distinguishability, or entanglement
measure

@ In our case, we compare the partial transpose of pag to the set of
PPT states using vq(X]||o).
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Going forward

Yesterday, we saw an interesting re-expression of diamond norm, using the
same concept:

Asymptotic Continuity

Dz and Ej are asymptotically continuous.
|DgNasB) — D3 (Masp)| < FIW = Mllo) log|AB|

hm fe)=0
( — J\/(A—\aB(wR-'\\\\l

|V = Mo i= max \\JVAAB(E'RA)

VRA

Key observation:
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