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o (Claim 1) Representation theory is a new source to
produce ‘interesting’ quantum channels

o (Claim 2) The channels have complicated structures!

o (Claim 3) But some important informational
quantities are computable.
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Definition
QO H = a finite dimensional Hilbert space.

@ B(H) = the set of all linear maps from H into H.

@ Assicuated to an isometry V' : Hy — Hg ® Hg are the following
quatum channels

®(p) : B(Ha) — B(Hg), p — (id ® tr)(VpV*) and

®(p) : B(Ha) = B(Hg),p— (tr @ id)(VpV™).

Here, ® is called the complementary channel of ®.
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Temperley-Lieb Channels 1/3

From the representation theory of SU(2) and Oy, we have a family of
isometries

Vi Sy Vin. : Hie= Hi @ H,

k, 0,
I+m
I+m—2
where /;m € {0} UN and k is one of _ :
[/ = m|

For G = SU(2) or O}, we define channels
% B(H) = B(H), pr (id @ tr)(Vigp(Vig)") and
O 2 B(He) = B(Hm), p— (tr @ id)(Vigp(Vi2)")-
Note that the channels above are complementary to each other.
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Temperley-Lieb Channels 2/3

Let G = SU(2). Then H; = C'** and ;"% - B(Hi) = B(H).

Example
For (/,m) = (1,1), possible k is either 0 or 2:

11 2
Pysu) a»—>{6 ]

di1 d12 413 |:all+ﬁ ayp+ans
2

Ny O

1,1
¢2 SuU(2) - | 921 d22 a3
d31 d32 ds3

az1+asp ax
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Temperley-Lieb Channels 3/3

Example
For (/,m) = (3,2), possible k is one of 1,3 or b:
2 b
2 V12
s [2 8] | 3T,
1,50(2) c d ¢ 24d %
V12 2
O3 %002 ‘Ma(C) = Mu(C)
O350 “Me(C) = May(C).
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G-covariant quantum channels 1/3

Example
Suppose that a g.channel ¢ : M, — M, satisfies

(UpU*) = Ud(p)U* YU € SU(2).

Then ® is a convex combination of CIDi’6 and CDi’i, where
1.0 _ a b a b
sy ¢ {C d}H{C d]

13 a2 b at2d b
Psu) [c d} H{ 3¢ 204 |-

—&
3 3

We are going to consider all dynamical transformations

p—= m(x)pm(x) "

arising from irreducible unitary representations !
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G-covariant quantum channels 2/3

Definition
@ A unitary representation is a continuous ft 7 : G — B(H) s.t.

@ m(x) is unitary Vx and
@ m(xy) = m(x)m(y) Vx,y.

Q A unitary rep. m: G — B(H) is called irreducible if there do not
exist other two reps my, 7> s.t.
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G-covariant quantum channels 3/3

Definition
Let ma : G — B(Ha) and mg : G — B(Hpg) be irr. unitary reps. Then
a quantum channel ® : B(Hs) — B(Hp) is called G-irreducibly

covariant w.r.t. (ma, mg) if

& (ma(x)pma(x1)) = 7 (x)®(p)Ta(x ") Vx € G.

Remark

e The channels CDk 'su(z) and <1>k 'su(z) @re SU(2)-irreducibly
covariant.

o Within the framework of compact quantum groups G, the notion
of G-covaraince can be defined naturally. Moreover, the channels

I'm 1 . . .
) ’"& and CIDk’"é+ are Oy, — irreducibly covariant.
N PN
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Advantages from G-covariance

Suppose that ® : B(Ha) — B(Hp) is irreducibly G-covariant.
e Various averaging techniques, e.g. bi-stochastic property!

® (mld/\) = ( /G WA(X)pWA(Xl)dX>
~ [ rel®(p)malx Yo = e

o G, (®) = log(dim(Hg)) — Hmin(®). Moreover, any minimizer of
Hpmin gives an explicit optimizer of C,.

1
o If ® is degradable, then Q(®) is attained at WIdHA.
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We are going to talk about the following properties for
Temperley-Lieb channels CDkG and CDL"&

o Structural properties
» Entanglement-breaking property

» Degradability
o Quantitative properties

» Minimum output entropy
» One-shot classical/quantum capacities

o Additivity questions and Future works
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Entanglement-breaking property
Theorem (BCLY, submitted)

QO The channel CDL’ZU(E) is not entanglement-breaking
& the channel ¢L’7';U(2) is not PPT & k> m — .
@ The channel ¢229(2) is not entanglement-breaking

& the channel ¢L’"S7U(2) is not PPT & k > [ — m.

Example
For (/, m) = (3,2), we have the following characterization:

Not PPT ¢§;§U(z) Not PPT
Not PPT ¢§3§U(2) Not PPT
Not PPT ¢i§u(2) Entanglement — breaking!

32
¢5,5U(2)

32
¢3,5U(2)

32
P sue)
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Entanglement-breaking property
Theorem (BCLY, submitted)
Let G = Oy with N > 3.

© The channel d);(’mm is not entanglement-breaking if k > m — /.
]

@ The channel CDZ(’"(’)Jr is not entanglement-breaking if k > | — m
'Un

Example

For (/, m) = (3,2), we have the following characterization:
®22., Not PPT if N>>1 &2, Not PPT if N >> 1
yYN "N

®32. Not PPT if N>>1  &32, Not PPT if N >> 1
yY N "N

&3 Not PPT if N>>1  &32, 777

1,05 1,05
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Degradability

Theorem (BCLY, submitted)
Since q)TsU(z) = ¢T’éu(2), we may assume | > m and we have the
following results:

Q/=m= q)gsu(z) is always degradable.
Q Ifl >m,

¢Tm,5U(2) degradable CDZ’J'F"m’SU(z) Not degradable

I;m m '
<I>/<,5U(2) 7 ¢k,5U(2) Not degradable
‘D;’_m,m supy degradable CDZ["nL sy Not degradable.
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Degradability

Example
@ For (/,m) =(3,2),

¢2:§U(2) degradable

(Dgfsu(z) Not degradable

¢i:§u(2) degradable
@ For (I,m) = (4,3),

33y degradable
43
q>5,5U
43
q33,5(/(2)

43
q>1,5(1(2)

D) Not degradable
Not degradable

degradable

32
q>5,5U(2

3,2
¢3,SU(2)

3,2
q>1,5U(2

) Not degradable
Not degradable

i3
¢7,5U(2)

i3
P sue)

i3
¢3,SU(2)

i3
v

Not degradable
Not degradable
Not degradable

) Not degradable.

Not degradable.

v
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Degradability
Theorem (BCLY, submitted)

@ For | > m and sufficiently large N >> 1,

I,m I,m
¢I+m,0ﬁ Not degradable ¢’+’"’OE Not degradable
¢;Tm+2’ o} Not degradable d)ji"mﬂyo " Not degradable
1,7 7.
O sue) 77 ¢17'"m,o;7 Not degradable.

@ For | < m and sufficiently large N >> 1,

I,m 7, m
¢/+m,o,”g Not degradable ¢/+m,ofg Not degradable
¢:ﬁ/+2,o,¢ Not degradable ¢i’,’nl’+2v0/¢ Not degradable
I,m 7,
q>r,fi,,su(2) Not degradable q>m,jl,0;g ?7.
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Quantitative aspects of Oy-TL channels?
o Minimum output entropy H,i,

o One-shot classical /quantum capacity CX/Q(”
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Minimum output entropies of Temperley-Lieb channels
Definition
The minimum output entropy of a g.channel ® : B(Ha) — B(Hp) is
defined by

Hmin(®) = min  H(®(p)). (1)

p: qg.states

v

Note that Hpin(P) = Hm,-n(CTD) for any g.channels.

Theorem
Q (BC18)
. = [+m—k
< (phm oy "
0 = Nll—r:(lo {Hmln(¢k7o,-:l-) 2 |Og(N)}
Q (BCLY, submitted)
. — I +m—k
I;m
0= Jim { Hni@17,) = 2= tog(m) |

&
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One-shot classical/quantum capacities

Definition
Let & : B(Ha) — B(Hg) be a quantum channel.
© The Holevo capacity is defined by

C(0) = sup {H(¢(prp,-)) - Zp;H(d»(p,-))} ,

(Pi,pi)i

where p; > 0, Zp,- =1 and p;'s are quantum states.
i

@ The one-shot quantum capacity is defined by

QU(®) = sup {H(®(p) — H(®(p))}.

p: a state

It is known that Q)(®) < C, (@) for any channel ¢.
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Classical /quantum capacities

Definition

Let & : B(Ha) — B(Hg) be a quantum channel. The classical
capacity and the quantum capacity are defined by

¢®n (1) ¢®n
C(®P) = lim ™) and Q(®) = lim Q™) resp.
n—o00 n n—00 n )
QU(®) — C(®)
<| E
Q(P) —— (o)
Coding theorems assert that e"“(*) codewords
& an e"?®) — dim'| unit sphere

asymptotically communicatable through ®®" : B(H$") — B(HZ").
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Additivity of capacities from structural properties

> anti — degradable or
e entanglment — breaking

o ®: degradable = Q) = QW(9).

o ¢: entanglement-breaking = C(P) = G (P).
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One-shot capacities of Templerley-Lieb channels
Theorem (BCLY, submitted)

For Temperley-Lieb channels of Oy, we have

_ .
@ Jin {om(cp'k 2~ e og(m) )
I+ k —

@) Jim {@‘”@’k'&)—m*""log )}

N—oo

k—/
= lim {C (d)i("(’ﬁ)— mx

N—oc0

Iog(N)}

Note that
I,m I,m .
0= QP su) < (P} su@)) = log(m +1) if 1> m.
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Additivity questions on Temperley-Lieb channels

Question (in progress)
For any (I;, mj, kj) (1 <j <t),

t
i { min <® (b/ mj) - Z Hmm(q);g,nj)} =07
=i

t
’jﬁ' E : lj,mj
{Cx ( kj ) - Cx(q)kj )} =07
Jj=1

s [ (o17) S} o
j=1
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Future works

o Entanglement-assisted classical capacity
o Entanglement of formation of Choi matrices

o Completely bounded minimum output entropies

24 /25



Thank you for your attention.



