Temperley-Lieb quantum channels

Sang-Gyun Youn

jointly with M.Brannan, B.Collins and H.H.Lee

Postdoctoral Fellow, Queen's University

MAQIT 2019, May 23, 2019

- (Claim 1) Representation theory is a new source to produce 'interesting' quantum channels
- (Claim 2) The channels have complicated structures!
- (Claim 3) But some important informational quantities are computable.

Definition

- \bullet H = a finite dimensional Hilbert space.
- ② B(H) = the set of all linear maps from H into H.
- **②** Assicuated to an isometry $V: H_A \to H_B \otimes H_E$ are the following quatum channels

$$\Phi(\rho): B(H_A) \to B(H_B), \rho \mapsto (id \otimes tr)(V \rho V^*)$$
 and $\widetilde{\Phi}(\rho): B(H_A) \to B(H_E), \rho \mapsto (tr \otimes id)(V \rho V^*).$

Here, Φ is called the complementary channel of Φ .

Temperley-Lieb Channels 1/3

From the representation theory of SU(2) and ${\cal O}_N^+$, we have a family of isometries

$$V_{k,SU(2)}^{l,m}, V_{k,O_N^+}^{l,m}: H_k \hookrightarrow H_l \otimes H_m,$$

where
$$l,m\in\{0\}\cup\mathbb{N}$$
 and k is one of
$$\left\{ \begin{array}{l} l+m\\l+m-2\\ \vdots\\ |l-m| \end{array} \right.$$

For $\mathbb{G} = SU(2)$ or O_N^+ , we define channels

$$\begin{split} & \Phi_{k,\mathbb{G}}^{I,\overline{m}} : B(H_k) \to B(H_I), \ \rho \mapsto (id \otimes tr)(V_{k,\mathbb{G}}^{I,m} \rho(V_{k,\mathbb{G}}^{I,m})^*) \ \text{and} \\ & \Phi_{k,\mathbb{G}}^{\overline{I},m} : B(H_k) \to B(H_m), \ \rho \mapsto (tr \otimes id)(V_{k,\mathbb{G}}^{I,m} \rho(V_{k,\mathbb{G}}^{I,m})^*). \end{split}$$

Note that the channels above are complementary to each other.

Temperley-Lieb Channels 2/3

Let
$$G=SU(2).$$
 Then $H_I=\mathbb{C}^{I+1}$ and $\Phi_{k,SU(2)}^{I,\overline{m}}:B(H_k)\to B(H_I).$

Example

For (I, m) = (1, 1), possible k is either 0 or 2:

$$\Phi_{0,SU(2)}^{1,\overline{1}}: a \mapsto \begin{bmatrix} \frac{d}{2} & 0\\ 0 & \frac{a}{2} \end{bmatrix} \\
\Phi_{2,SU(2)}^{1,\overline{1}}: \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} + \frac{a_{22}}{2} & \frac{a_{12} + a_{23}}{\sqrt{2}} \\ \frac{a_{21} + a_{32}}{\sqrt{2}} & \frac{a_{22}}{2} + a_{33} \end{bmatrix}$$

Temperley-Lieb Channels 3/3

Example

For (1, m) = (3, 2), possible *k* is one of 1, 3 or 5:

$$\Phi_{1,SU(2)}^{3,\overline{2}}: \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} \frac{\frac{a}{2}}{2} & \frac{b}{\sqrt{12}} \\ \frac{c}{\sqrt{12}} & \frac{a}{3} + \frac{d}{6} & \frac{b}{3} \\ & \frac{c}{3} & \frac{a}{6} + \frac{d}{3} & \frac{b}{\sqrt{12}} \\ & & \frac{c}{\sqrt{12}} & \frac{d}{2} \end{bmatrix}$$

$$\Phi_{3,SU(2)}^{3,\overline{2}}: M_4(\mathbb{C}) \to M_4(\mathbb{C})$$

$$\Phi_{5,SU(2)}^{3,\overline{2}}: M_6(\mathbb{C}) \to M_4(\mathbb{C}).$$

G-covariant quantum channels 1/3

Example

Suppose that a q.channel $\Phi:M_2 o M_2$ satisfies

$$\Phi(U\rho U^*) = U\Phi(\rho)U^* \ \forall U \in SU(2).$$

Then Φ is a convex combination of $\Phi_1^{1,0}$ and $\Phi_1^{1,2}$, where

$$\Phi_{1,SU(2)}^{1,\overline{0}}: \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\Phi_{1,SU(2)}^{1,\overline{2}}: \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} \frac{a+2d}{3} & -\frac{b}{3} \\ -\frac{c}{3} & \frac{2a+d}{3} \end{bmatrix}.$$

We are going to consider all dynamical transformations

$$\rho \mapsto \pi(x)\rho\pi(x)^{-1}$$

arising from irreducible unitary representations $\pi!$

G-covariant quantum channels 2/3

Definition

- **①** A unitary representation is a continuous ft $\pi: G \to B(H)$ s.t.
 - **1** $\pi(x)$ is unitary $\forall x$ and
- ② A unitary rep. $\pi: G \to B(H)$ is called irreducible if there do not exist other two reps π_1, π_2 s.t.

$$\pi(x) \cong \left[\begin{array}{cc} \pi_1(x) & 0 \\ 0 & \pi_2(x) \end{array} \right].$$

G-covariant quantum channels 3/3

Definition

Let $\pi_A: G \to B(H_A)$ and $\pi_B: G \to B(H_B)$ be irr. unitary reps. Then a quantum channel $\Phi: B(H_A) \to B(H_B)$ is called *G*-irreducibly covariant w.r.t. (π_A, π_B) if

$$\Phi\left(\pi_A(x)\rho\pi_A(x^{-1})\right)=\pi_B(x)\Phi(\rho)\pi_B(x^{-1})\ \forall x\in G.$$

Remark

- The channels $\Phi_{k,SU(2)}^{l,\overline{m}}$ and $\Phi_{k,SU(2)}^{l,m}$ are SU(2)-irreducibly covariant.
- Within the framework of compact quantum groups \mathbb{G} , the notion of \mathbb{G} -covaraince can be defined naturally. Moreover, the channels

$$\Phi_{k,O_N^+}^{l,\overline{m}}$$
 and $\Phi_{k,O_N^+}^{l,m}$ are O_N^+ - irreducibly covariant.

Advantages from G-covariance

Suppose that $\Phi: B(H_A) \to B(H_B)$ is irreducibly *G*-covariant.

Various averaging techniques, e.g. bi-stochastic property!

$$\Phi\left(\frac{1}{\dim(H_A)}Id_A\right) = \Phi\left(\int_G \pi_A(x)\rho\pi_A(x^{-1})dx\right)$$
$$= \int_G \pi_B(x)\Phi(\rho)\pi_B(x^{-1})dx = \frac{1}{\dim(H_B)}Id_B.$$

- $C_{\chi}(\Phi) = \log(\dim(H_B)) H_{\min}(\Phi)$. Moreover, any minimizer of H_{\min} gives an explicit optimizer of C_{χ} .
- If Φ is degradable, then $Q(\Phi)$ is attained at $\frac{1}{dim(H_A)}Id_{H_A}$.

We are going to talk about the following properties for Temperley-Lieb channels $\Phi_{k,\mathbb{G}}^{l,\overline{m}}$ and $\Phi_{k,\mathbb{G}}^{\overline{l},m}$:

- Structural properties
 - Entanglement-breaking property
 - Degradability
- Quantitative properties
 - Minimum output entropy
 - ► One-shot classical/quantum capacities
- Additivity questions and Future works

Entanglement-breaking property

Theorem (BCLY, submitted)

- The channel $\Phi_{k,SU(2)}^{l,\overline{m}}$ is not entanglement-breaking \Leftrightarrow the channel $\Phi_{k,SU(2)}^{l,\overline{m}}$ is not PPT $\Leftrightarrow k > m-1$.
- The channel $\Phi_{k,SU(2)}^{\bar{l},m}$ is not entanglement-breaking \Leftrightarrow the channel $\Phi_{k,SU(2)}^{\bar{l},m}$ is not PPT $\Leftrightarrow k > l m$.

Example

For (I, m) = (3, 2), we have the following characterization:

$$\begin{array}{lll} \Phi_{5,SU(2)}^{3,\overline{2}} & \textit{Not PPT} & \Phi_{5,SU(2)}^{\overline{3},2} & \textit{Not PPT} \\ \Phi_{3,SU(2)}^{3,\overline{2}} & \textit{Not PPT} & \Phi_{3,SU(2)}^{\overline{3},2} & \textit{Not PPT} \\ \Phi_{1,SU(2)}^{3,\overline{2}} & \textit{Not PPT} & \Phi_{1,SU(2)}^{\overline{3},2} & \textit{Entanglement} - \textit{breaking}! \end{array}$$

Entanglement-breaking property

Theorem (BCLY, submitted)

Let $\mathbb{G} = O_N^+$ with $N \geq 3$.

- The channel $\Phi_{k,O_N^+}^{l,\overline{m}}$ is not entanglement-breaking if k > m-l.
- The channel $\Phi_{k,O_k^+}^{\bar{l},m}$ is not entanglement-breaking if k>l-m

Example

For (I, m) = (3, 2), we have the following characterization:

$$\Phi_{5,O_N^+}^{3,\overline{2}}$$
 Not PPT if $N >> 1$ $\Phi_{5,O_N^+}^{\overline{3},2}$ Not PPT if $N >> 1$

$$\Phi^{3,\overline{2}}_{3,\mathcal{O}_N^+}$$
 Not PPT if $N>>1$ $\Phi^{\overline{3},2}_{3,\mathcal{O}_N^+}$ Not PPT if $N>>1$

$$\Phi_{1,O_N^+}^{3,\overline{2}}$$
 Not PPT if $N >> 1$ $\Phi_{1,O_N^+}^{\overline{3},2}$???

Degradability

Theorem (BCLY, submitted)

Since $\Phi_{k,SU(2)}^{l,\overline{m}} = \Phi_{k,SU(2)}^{\overline{m},l}$, we may assume $l \ge m$ and we have the following results:

- ② If l > m,

 $\Phi_{l-m,SU(2)}^{l,\overline{m}}$

degradable $\Phi_{l-m,SU(2)}^{l,m}$

Not degradable.

Degradability

Example

• For
$$(I, m) = (3, 2)$$
,

$$\Phi_{5,SU(2)}^{3,2}$$
 degradable

$$\Phi_{3,SU(2)}^{3,\overline{2}}$$
 Not degradable

$$\Phi_{1,SU(2)}^{3,\overline{2}}$$
 degradable

2 For
$$(I, m) = (4, 3)$$
,

$$\Phi_{7,SU(2)}^{4,\overline{3}}$$
 degradable

$$\Phi_{5,SU(2)}^{4,\overline{3}}$$
 Not degradable

$$\Phi_{3,SU(2)}^{4,\overline{3}}$$
 Not degradable

$$\Phi_{1,SU(2)}^{4,\overline{3}}$$
 degradable

$$\Phi_{5,SU(2)}^{\overline{3},2}$$
 Not degradable

$$\Phi_{3,SU(2)}^{\overline{3},2}$$
 Not degradable

$$\Phi_{1,SU(2)}^{\overline{3},2}$$
 Not degradable.

$$\Phi_{7,SU(2)}^{\overline{4},3}$$
 Not degradable

$$\Phi_{5,SU(2)}^{\overline{4},3}$$
 Not degradable

$$\Phi_{3,SU(2)}^{4,3}$$
 Not degradable

$$\Phi_{1,SU(2)}^{\overline{4},3}$$
 Not degradable.

Degradability

Theorem (BCLY, submitted)

1 For $l \ge m$ and sufficiently large N >> 1,

$$\Phi_{l+m,O_N^+}^{l,\overline{m}} \begin{tabular}{l} \textbf{Not degradable} \\ & \vdots \\ &$$

$$\Phi_{l-m+2,O_N^+}^{l,\overline{m}}$$
 Not degradable

$$\Phi_{l-m,SU(2)}^{l,\overline{m}}$$
 ??

② For $l \le m$ and sufficiently large N >> 1,

$$\Phi_{l+m,O_N^+}^{l,\overline{m}}$$
 Not degradable :

$$\Phi_{m-l+2,O_{kl}^+}^{l,\overline{m}}$$
 Not degradable

$$\Phi_{m-1,SU(2)}^{I,\overline{m}}$$
 Not degradable

$$\Phi_{l+m,O_N^+}^{\bar{l},m}$$
 Not degradable

$$\Phi_{l-m+2,O_N^+}^{\bar{l},m}$$
 Not degradable

$$\Phi_{l-m,O_N^+}^{\bar{l},m}$$
 Not degradable.

$$\Phi_{l+m,O_{t}^{+}}^{\bar{l},m}$$
 Not degradable

$$\Phi_{m-l+2,O_{N}^{+}}^{\bar{I},m} \ \textit{Not degradable}$$

$$\Phi_{m-l,O_{+}^{+}}^{\overline{l},m}$$
 ??.

$$_{-1,O_{N}^{+}}$$
 ??

Quantitative aspects of O_N^+ -TL channels?

- Minimum output entropy H_{min}
- One-shot classical/quantum capacity $C_{Y}/Q^{(1)}$

Minimum output entropies of Temperley-Lieb channels

Definition

The minimum output entropy of a q.channel $\Phi: B(H_A) \to B(H_B)$ is defined by

$$H_{min}(\Phi) = \min_{\rho: \ q. states} H(\Phi(\rho)).$$
 (1)

Note that $H_{min}(\Phi) = H_{min}(\Phi)$ for any q.channels.

Theorem

$$0 \leq \lim_{N \to \infty} \left\{ H_{min}(\Phi_{k,O_N^+}^{l,\overline{m}}) - \frac{l+m-k}{2} \log(N) \right\}$$

(BCLY, submitted)

$$0 = \lim_{N \to \infty} \left\{ H_{min}(\Phi_{k,O_N^+}^{l,\overline{m}}) - \frac{l+m-k}{2} \log(N) \right\}$$

One-shot classical/quantum capacities

Definition

Let $\Phi: B(H_A) \to B(H_B)$ be a quantum channel.

The Holevo capacity is defined by

$$C_{\chi}(\Phi) = \sup_{(p_i,\rho_i)_i} \left\{ H(\Phi(\sum_i p_i \rho_i)) - \sum_i p_i H(\Phi(\rho_i)) \right\},\,$$

where $p_i \geq 0$, $\sum_i p_i = 1$ and ρ_i 's are quantum states.

The one-shot quantum capacity is defined by

$$Q^{(1)}(\Phi) = \sup_{
ho: \ a \ state} \left\{ H(\Phi(
ho)) - H(\widetilde{\Phi}(
ho))
ight\}.$$

It is known that $Q^{(1)}(\Phi) \leq C_{\gamma}(\Phi)$ for any channel Φ .

Classical/quantum capacities

Definition

Let $\Phi: B(H_A) \to B(H_B)$ be a quantum channel. The classical capacity and the quantum capacity are defined by

$$C(\Phi) = \lim_{n \to \infty} \frac{C_{\chi}(\Phi^{\otimes n})}{n}$$
 and $Q(\Phi) = \lim_{n \to \infty} \frac{Q^{(1)}(\Phi^{\otimes n})}{n}$ resp.

$$Q^{(1)}(\Phi) \xrightarrow{\leq} C_{\chi}(\Phi)$$

$$\leq \downarrow \qquad \qquad \downarrow \leq$$

$$Q(\Phi) \xrightarrow{\leq} C(\Phi)$$

Coding theorems assert that $\begin{cases} e^{nC(\Phi)} \ codewords \\ an \ e^{nQ(\Phi)} - dim'l \ unit \ sphere \end{cases}$ are asymptotically communicatable through $\Phi^{\otimes n}: B(H_A^{\otimes n}) \to B(H_B^{\otimes n})$.

Additivity of capacities from structural properties

•
$$\Phi$$
: $\begin{cases} anti-degradable \ or \\ entanglment-breaking \end{cases} \Rightarrow Q(\Phi)=Q^{(1)}(\Phi)=0.$

•
$$\Phi$$
: degradable $\Rightarrow Q(\Phi) = Q^{(1)}(\Phi)$.

•
$$\Phi$$
: entanglement-breaking $\Rightarrow C(\Phi) = C_{\chi}(\Phi)$.

One-shot capacities of Templerley-Lieb channels

Theorem (BCLY, submitted)

For Temperley-Lieb channels of O_N^+ , we have

$$(1) \lim_{N \to \infty} \left\{ Q^{(1)}(\Phi_{k,O_N^+}^{l,\overline{m}}) - \frac{l+k-m}{2} \log(N) \right\}$$

$$= \lim_{N \to \infty} \left\{ C_{\chi}(\Phi_{k,O_N^+}^{l,\overline{m}}) - \frac{l+k-m}{2} \log(N) \right\} = 0.$$

(2)
$$\lim_{N \to \infty} \left\{ Q^{(1)}(\Phi_{k,O_N^+}^{\bar{I},m}) - \frac{m+k-l}{2} \log(N) \right\}$$
$$= \lim_{N \to \infty} \left\{ C_{\chi}(\Phi_{k,O_N^+}^{\bar{I},m}) - \frac{m+k-l}{2} \log(N) \right\} = 0.$$

Note that

$$0 = Q(\Phi_{l+m,SU(2)}^{\bar{l},m}) < C(\Phi_{l+m,SU(2)}^{\bar{l},m}) = \log(m+1) \text{ if } l \geq m.$$

Additivity questions on Temperley-Lieb channels

Question (in progress)

For any (l_i, m_i, k_i) $(1 \le j \le t)$,

$$\begin{split} &Q1.\lim_{N\to\infty}\left\{H_{min}\left(\bigotimes_{j=1}^t\Phi_{k_j}^{l_j,\overline{m_j}}\right)-\sum_{j=1}^tH_{min}(\Phi_{k_j}^{l_j,\overline{m_j}})\right\}=0?\\ &Q2.\lim_{N\to\infty}\left\{C_\chi\left(\bigotimes_{j=1}^t\Phi_{k_j}^{l_j,\overline{m_j}}\right)-\sum_{j=1}^tC_\chi(\Phi_{k_j}^{l_j,\overline{m_j}})\right\}=0?\\ &Q3.\lim_{N\to\infty}\left\{Q^{(1)}\left(\bigotimes_{j=1}^t\Phi_{k_j}^{l_j,\overline{m_j}}\right)-\sum_{j=1}^tQ^{(1)}(\Phi_{k_j}^{l_j,\overline{m_j}})\right\}=0? \end{split}$$

Future works

- Entanglement-assisted classical capacity
- Entanglement of formation of Choi matrices
- Completely bounded minimum output entropies

Thank you for your attention.