TITLE	PPT^2	CHOI'S DECOMPOSITION	PROOF OF $PPT^2(n=3)$	References
	000000	00000000	00	

On Positive Partial Transpose Squared Conjecture

Yu Yang @SNU May 2019

Co-author(s): Prof. Lin Chen, Prof. Wai-Shing Tang.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

00000	00000000	00	

NOTATIONS

- Let M_n(ℂ) be the algebra of all n × n matrices over the complex field ℂ.
- ► A matrix A in M_n(C) is positive semi-definite(PSD), and write A ≥ 0, if A is hermitian and all eigenvalues of A are non-negative.
- ► Denote by M⁺_n(C) the set of all PSD matrices in M_n(C).
- ► Denote by B(M_m(C), M_n(C)) the space of all linear maps from M_m(C) to M_n(C).

POSITIVE MAPS

- ► A linear map ϕ from $M_m(\mathbb{C})$ to $M_n(\mathbb{C})$ is positive if $\phi(M_m^+(\mathbb{C})) \subseteq M_n^+(\mathbb{C})$.
- ► The identity map on M_n(C) and the transpose map on M_n(C) are denoted by *id_n* and τ_n respectively.
- ► A map ϕ is *k*-positive if the map $id_k \otimes \phi : M_k(M_m(\mathbb{C})) \to M_k(M_n(\mathbb{C}))$ is positive.
- A map ϕ is *k*-copositive if the map $\tau_k \otimes \phi : M_k(M_m(\mathbb{C})) \to M_k(M_n(\mathbb{C}))$ is positive.

PPT BINDING MAPS

- ► A completely (co)positive map is *k*-(co)positive for every *k*.
- A map is decomposable if it is the sum of a completely positive map and a completely copositive map.
- A PPT binding map is both completely positive and completely copositive.

Here PPT stands for "positive partial transposition" since the Choi matrix of such a map is positive under partial transpose.

ENTANGLEMENT BREAKING CHANNELS

- A quantum channel is a trace-preserving CP map.
- ► A linear map \u03c6 is entanglement breaking if its Choi matrix is separable.

Entanglement breaking quantum channels represent useless processes for any non-classical communication task.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THE PPT SQUARED CONJECTURE

The following conjecture is introduced by M. Christandl.

For any PPT binding map $\phi \in B(M_n(\mathbb{C}), M_n(\mathbb{C}))$, its square $\phi \circ \phi$ is entanglement breaking.

- Our proof of the conjecture when n = 3 is a direct consequence of our result that two-qutrit PPT states have Schmidt number at most two [Chen et al., 2018].
- Our proof is independent from the one found by Müller-Hermes [Christandl et al., 2018].
- Note that the PPT squared conjecture in high dimensional cases are open.

A PICTURE TO ILLUSTRATE

 \implies Is the composite channel $\phi_2 \circ \phi_1$ entanglement breaking?

TRIVIAL LIFTING ZERO

Think about how to trivially embed a map ϕ in $B(M_2(\mathbb{C}), M_3(\mathbb{C}))$ to $B(M_3(\mathbb{C}), M_3(\mathbb{C}))$.

• The Choi matrix of ϕ resides in $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$.

•
$$C_{\phi}$$
 writes as a block matrix $\begin{pmatrix} \phi(E_{11}) & \phi(E_{12}) \\ \phi(E_{21}) & \phi(E_{22}) \end{pmatrix}$.

- ► Take it as the Choi matrix $C_{\phi} \in M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$: $\begin{pmatrix} \phi(E_{11}) & \phi(E_{12}) & \phi(E_{13}) = 0 \\ \phi(E_{21}) & \phi(E_{22}) & \phi(E_{23}) = 0 \\ \phi(E_{31}) = 0 & \phi(E_{32}) = 0 & \phi(E_{33}) = 0 \end{pmatrix} \triangleq C_{\phi}.$
- A degenerate φ ∈ B(M₃(C), M₃(C)) admits a similar Choi matrix and reduces to a map in B(M₂(C), M₃(C))

TRIVIAL LIFTING ONE

- Given a linear map χ ∈ B(M_s(ℂ), M_n(ℂ)), fix the canonical matrix unit basis E_{ij}, i, j = 1, ..., s, in M_s(ℂ), under which the Choi matrix is C_χ = [χ(E_{ij})]^s_{i,j=1} ∈ M_s(M_n(ℂ)).
- ► Given $I = \{n_1, ..., n_p\} \subset \{1, ..., s + p\}$, where $n_1 < \cdots < n_p$, extend the matrix C_{χ} to a $(s + p) \times (s + p)$ block matrix $C_I^{lift} \in M_{s+p}(M_n(\mathbb{C}))$ by adding one row and one column of $n \times n$ zero matrices at the n_k^{th} level for each k = 1, ..., p as in the next slide:

TITLE	PPT^2	CHOI'S DECOMPOSITION	PROOF OF $PPT^2(n = 3)$	References
	000000	0000000	00	

TRIVIAL LIFTING TWO

< □ > < @ > < E > < E > E のQ@

.

TRIVIAL LIFTING THREE

- Denote by *˜*_I the map in B(M_{s+p}(ℂ), M_n(ℂ)) associated with the Choi matrix
 C_{*˜*_I} = [*˜*_p(E_{ij})]^{s+p}_{i,j=1} = C^{lift}_I.
- The map *χ̃_I* is called a I-trivial lifting of the original map *χ*. If *I* = {*q*} is a singleton, simply denote by *χ̃_q* the *q*-trivial lifting of *χ*.

CHOI'S DECOMPOSITION

The following result is taken from [Yang et al., 2016].

Let ϕ be a non-zero k-positive $(2 \le k < \min\{m, n\})$ map in $B(M_m(\mathbb{C}), M_n(\mathbb{C}))$. There exists a decomposition $\phi = \psi + \gamma$, where ψ is a non-zero completely positive map and γ is a p-trivial lifting of a (k-1)-positive map in $B(M_{m-1}(\mathbb{C}), M_n(\mathbb{C}))$, for some $p \in \{1, ..., m\}$.

Our proof relies on enhancing a peel-off technique first appeared in [Marciniak, 2010].

WHEN 2-POSITIVITY IMPLIES DECOMPOSABILITY

- In B(M_m(ℂ), M_n(ℂ)), mn ≤ 6, Woronowicz and Størmer showed that every positive map is decomposable.
- ▶ Further we showed that in B(M₃(ℂ), M₃(ℂ)), although positive maps may not be decomposable, 2-positive maps are always decomposable.

Every 2-(co)positive map ϕ in $B(M_3(\mathbb{C}), M_3(\mathbb{C}))$ is decomposable.

TITLE	PPT^2	CHOI'S DECOMPOSITION	PROOF OF $PPT^2(n = 3)$	References
	000000	000000000	00	

TRADE POSITIVITY FOR DIMENSION

SCHMIDT NUMBER

- The Schmidt rank for a pure state $|\psi\rangle$ is its rank.
- A bipartite density matrix ρ has Schmidt number k if
 - 1. for any decomposition $\{p_i \ge 0, |\psi_i\rangle\}$ of ρ , at least one of the vectors $|\psi_i\rangle$ has Schmidt rank at least k.
 - 2. there exists a decomposition of ρ with all vectors $|\psi_i\rangle$ of Schmidt rank at most *k*.

• Equivalently,
$$SN(\rho) = \min_{\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|} \bigg\{ \max_i SR(|\psi_i\rangle) \bigg\}.$$

The Schmidt number of bipartite states does not increase under LOCC. So the Schmidt number is an entanglement monotone for bipartite states.

DUAL CONE CORRESPONDENCE

Translate the aforementioned result into the language of quantum states to answer a question raised in [Kye, 2013]

- ▶ V_k the set of all quantum states of Schmidt number≤ k.
- \mathbb{P}_k the set of all k-positive maps.
- ▶ D the cone of all decomposable maps.
- ► T the cone of all positive partial transpose states.

Dual Cone Correspondence

$$\mathbb{V}_1 \stackrel{\frown}{\cong} \mathbb{T} \stackrel{\frown}{\cong} \mathbb{V}_2 \stackrel{\frown}{\cong} \mathbb{V}_3 = (M_3(\mathbb{C}) \otimes M_3(\mathbb{C}))^+$$

 $\stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} \mathbb{P}_2 \stackrel{\frown}{\cong} \mathbb{P}_3 \cong (M_3(\mathbb{C}) \otimes M_3(\mathbb{C}))^+$

A SHORT PROOF

Proof for PPT^2 conjecture when n = 3.

- Set *ρ* as the maximally entangled state in M₃ ⊗ M₃. So *σ* := (*id*₃ ⊗ *φ*)(*ρ*) is a PPT state in M₃ ⊗ M₃.
- Let $\sigma = \sum_{j} p_{j} |a_{j}\rangle\langle a_{j}|$ where each $|a_{j}\rangle$ has Schmidt rank at most two. That is, $|a_{j}\rangle \in \mathcal{K}_{j} \simeq \mathbb{C}^{3} \otimes \mathbb{C}^{2}$.
- ► Each state $(id_3 \otimes \phi)(|a_j\rangle\langle a_j|)$ is a PPT state in $M_3 \otimes M_2$ up to local equivalence. The Peres-Horodecki criterion says that $(id_3 \otimes \phi)(|a_j\rangle\langle a_j|)$ is separable.
- Using the convex sum of σ we obtain that $(id_3 \otimes (\phi \circ \phi))(\rho) = (id_3 \otimes \phi)(\sigma)$ is separable.

TITLE	<i>РРТ²</i> 000000	CHOI'S DECOMPOSITION 000000000	PROOF OF $PPT^2(n = 3)$ $\circ \bullet$	References

Thank You!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TITLE	<i>РРТ²</i> 000000	CHOI'S DECOMPOSITION 000000000	PROOF OF $PPT^2(n = 3)$ oo	References

REFERENCES

- Chen, L., Yang, Y., and Tang, W.-S. (2018). The positive partial transpose conjecture for n=3. arXiv:1807.03636.
- Christandl, M., Hermes, A. M., and Wolf, M. M. (2018). When do composed maps become entanglement breaking? arXiv:1807.01266.
- **Kye**, S.-H. (2013).

Facial structures for various notions of positivity and applications to the theory of entanglement. *Rev. Math. Phys.*, 25:1330002.

Marciniak, M. (2010). On extremal positive maps acting between type i factors. Noncommutative Harmonic Analysis with Applications to probability II, Banach Center Publications, 89:1330002.

Yang, Y., Leung, D. H., and Tang, W.-S. (2016) - (=) (=) (