Quantum Statistical Comparison and Majorization

(and their applications to generalized resource theories)

Francesco Buscemi (Nagoya University) MAQIT 2019, Seoul National University 21 May 2019 Guiding idea: generalized resource theories as order theories for stochastic (probabilistic) structures

The Precursor: Majorization

Lorenz Curves and Majorization

- two probability distributions, $p = (p_1, \dots, p_n)$ and $q = (q_1, \dots, q_n)$
- truncated sums $P(k) = \sum_{i=1}^{k} p_i^{\downarrow}$ and $Q(k) = \sum_{i=1}^{k} q_i^{\downarrow}$, for all $k = 1, \dots, n$
- p majorizes q, i.e., $p \succeq q$, whenever $P(k) \ge Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \dots, 1)$

Hardy, Littlewood, and Pólya (1929): $p \succeq q \iff q = Mp$, for some bistochastic matrix M. Lorenz curve for probability distribution $\boldsymbol{p} = (p_1, \cdots, p_n)$:

 $(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$

Blackwell's Extensions

Statistical Decision Problems

Definition

A statistical model (or *experiment*) is a triple $\mathbf{w} = \langle \Theta, \mathcal{X}, w \rangle$, a statistical decision problem (or game) is a triple $\mathbf{g} = \langle \Theta, \mathcal{U}, \ell \rangle$.

Playing Games with Experiments

• the experiment (model) is $\Theta \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{U}$ given, i.e., it is the "resource" $\diamondsuit \qquad & & & & & & & & \\ \bullet \text{ the decision instead } can$ be optimized $\theta \xrightarrow[w(x|\theta)]{} x \xrightarrow[d(u|x)]{} u$

Definition

The **expected payoff** of a statistical model $\mathbf{w} = \langle \Theta, \mathcal{X}, w \rangle$ w.r.t. a decision problem $\mathbf{g} = \langle \Theta, \mathcal{U}, \ell \rangle$ is given by

$$\mathbb{E}_{\mathbf{g}}[\mathbf{w}] \stackrel{\text{\tiny def}}{=} \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta,u) d(u|x) w(x|\theta) |\Theta|^{-1}$$

Comparing Statistical Models 1/2

First model:
 Second model:

$$\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$$
 $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w'(y|\theta) \rangle$
 $\Theta \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{U}$
 $\Theta \xrightarrow{\text{experiment}} \mathcal{Y} \xrightarrow{\text{decision}} \mathcal{U}$
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 θ
 $\xrightarrow{w(x|\theta)} \mathcal{X}$
 $\overrightarrow{d(u|x)}$
 u
 θ
 $\overrightarrow{w'(y|\theta)}$
 x
 $\overrightarrow{d'(u|y)}$
 u

For a fixed decision problem $\mathbf{g} = \langle \Theta, \mathcal{U}, \ell \rangle$, the expected payoffs $\mathbb{E}_{\mathbf{g}}[\mathbf{w}]$ and $\mathbb{E}_{\mathbf{g}}[\mathbf{w}']$ can always be ordered.

Definition (Information Preorder)

If the model $\mathbf{w} = \langle \Theta, \mathcal{X}, w \rangle$ is better than model $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w' \rangle$ for all decision problems $\mathbf{g} = \langle \Theta, \mathcal{U}, \ell \rangle$, then we say that \mathbf{w} is *more informative* than \mathbf{w}' , and write

$$\mathbf{w} \succeq \mathbf{w}'$$
 .

Problem. Can we visualize the information morphism \succeq more concretely?

Information Morphism = Statistical Sufficiency

Blackwell-Sherman-Stein Theorem (1948-1953)

Given two experiments with the same parameter space, $\mathbf{w} = \langle \Theta, \mathcal{X}, w \rangle$ and $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w' \rangle$, the condition $\mathbf{w} \succeq \mathbf{w}'$ holds *iff* there exists a conditional probability $\varphi(y|x)$ such that $w'(y|\theta) = \sum_x \varphi(y|x)w(x|\theta)$.

David H. Blackwell (1919-2010)

Special Case: Dichotomies

- two *pairs* of probability distributions, i.e., two *dichotomies*, (p_1, p_2) and (q_1, q_2) , of dimension m and n, respectively
- relabel entries such that ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing
- construct the truncated sums $P_{\alpha}(k) = \sum_{i=1}^{k} p_{\alpha}^{i}$ and $Q_{\beta}(k) = \sum_{j=1}^{k} q_{\beta}^{j}$
- $(p_1, p_2) \succeq (q_1, q_2)$ iff the relative Lorenz curve of the former is never below that of the latter

Blackwell's Theorem for Dichotomies (1953): $(p_1, p_2) \succeq (q_1, q_2) \iff q_{\alpha} = Mp_{\alpha}$, for some stochastic matrix M.

Relative Lorenz curves:

 $(x_k, y_k) = (P_2(k), P_1(k))$

The Viewpoint of Communication Theory

Statistics vs Information Theory

• Statistical models are mathematically equivalent to noisy channels:

$$\mathcal{D} \Longrightarrow \boxed{\mathbb{W}(\mathbf{z}|\boldsymbol{\delta})} \boldsymbol{\Rightarrow} \mathcal{X}$$

• However: while in statistics the input is inaccessible (Nature does not bother with coding!)

$$\mathcal{D} \Rightarrow w(z|\theta) \Rightarrow \mathcal{X} \Rightarrow \qquad \Rightarrow \mathcal{Y}$$

• in communication theory a sender *does code*!

$$\mathsf{M} \mathrel{\mathrel{\scriptstyle{\triangleleft}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\triangleleft}}} \mathsf{W}(\mathsf{z}|\mathfrak{d}) \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{Z} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{Z} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{Z} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{Z} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle{\mid}}} \mathsf{D} \mathrel{\mathrel{\scriptstyle}} \mathsf{D} \mathrel{\mathrel} \mathsf{D} \mathrel{\mathrel{\scriptstyle}} \mathsf{D} \mathrel{\mathrel} \mathsf{D} \mathrel{\mathsf} \mathsf{D} \mathrel{\mathrel} \mathsf{D} \mathrel{\mathrel} \mathsf{D} \mathrel{\mathsf} \mathsf{D} \mathrel{\mathrel} \mathsf{D} \mathrel{\mathsf} \mathsf$$

From Decision Problems to Decoding Problems

$$m \Rightarrow e \Rightarrow z \Rightarrow w \Rightarrow y \Rightarrow d \Rightarrow \hat{m}$$

Definition (Decoding Problems)

Given a channel $\mathbf{w} = \langle \mathcal{X}, \mathcal{Y}, w(y|x) \rangle$, a decoding problem is defined by an encoding $\mathbf{e} = \langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle$ and the payoff function is the optimum guessing probability:

$$\mathbb{E}_{\mathbf{e}}[\mathbf{w}] \stackrel{\text{def}}{=} \max_{d(m|y)} \sum_{m,x,y} d(m|y) w(y|x) e(x|m) |\mathcal{M}|^{-1} = 2^{-H_{\min}(M|Y)}$$

Theorem

Given two discrete noisy channels $\mathbf{w}: X \to Y$ and $\mathbf{w}': X \to Z$, consider the following pre-orders:

1. degradability: there exists $\varphi(z|y)$: $w'(x|z) = \sum_{y} \varphi(z|y)w(y|x)$

2. noisiness: for all encodings $\mathbf{e} = \langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle$, $H(M|Y) \leq H(M|Z)$

3. ambiguity: for all encodings $\mathbf{e} = \langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle$, $H_{\min}(M|Y) \leq H_{\min}(M|Z)$

we have: $(1) \Longrightarrow (2)$ (data-processing inequality), $(2) \not\Longrightarrow (1)$ (Körner and Marton, 1977), but $(1) \iff (3)$ (FB, 2016).

Some Classical Channel Morphisms

Output degrading:

Input degrading:

$$u \Rightarrow \Rightarrow z \Rightarrow w \Rightarrow y = u \Rightarrow y$$

Full coding (Shannon's "channel inclusion", 1958):

$$u \Rightarrow z \Rightarrow w \Rightarrow y \Rightarrow z \Rightarrow z = u \Rightarrow z \Rightarrow z$$

Extensions to the Quantum Case

Some Quantum Channel Morphisms

Output degrading:

$$A \rightarrow \bigcirc B \rightarrow \bigcirc B' = A \rightarrow \bigcirc B'$$

Input degrading:

$$A' \rightarrow \bigcirc \rightarrow A \rightarrow \bigcirc \rightarrow B = A' \rightarrow \bigcirc B$$

Quantum coding with forward CC:

$$A' \rightarrow \bigcirc \rightarrow B \rightarrow \bigcirc \rightarrow B' = A' \rightarrow \square \rightarrow B'$$

Output Degradability

Comparison of Quantum Statistical Models 1/2

Quantum statistical models as cq-channels:

Formulation below from: A.S. Holevo, *Statistical Decision Theory for Quantum Systems*, 1973.

classical case	quantum case
\bullet decision problems $\mathbf{g} = \langle \Theta, \mathcal{U}, \ell \rangle$	\bullet decision problems $\mathbf{g}=\langle \Theta, \mathcal{U}, \ell \rangle$
• models $\mathbf{w} = \langle \Theta, \mathcal{X}, \{w(x \theta)\} \rangle$	• quantum models $\mathcal{E} = \left\langle \Theta, \mathcal{H}_S, \{ \rho^{ heta}_S \} ight angle$
• decisions $d(u x)$	• POVMs $\{P^u_S: u \in \mathcal{U}\}$
• $p_c(u,\theta) = \sum_x d(u x)w(x \theta) \Theta ^{-1}$	• $p_q(u,\theta) = \operatorname{Tr}\left[\rho_S^{\theta} P_S^{u}\right] \Theta ^{-1}$
• $\mathbb{E}_{\mathbf{g}}[\mathbf{w}] = \max_{d(u x)} \sum \ell(\theta, u) p_c(u, \theta)$	• $\mathbb{E}_{\mathbf{g}}[\mathcal{E}] = \max_{\{P_S^u\}} \sum \ell(\theta, u) p_q(u, \theta)$

Comparison of Quantum Statistical Models 2/2

What follows is from: FB, Comm. Math. Phys., 2012

- consider two quantum statistical models $\mathcal{E} = \langle \Theta, \mathcal{H}_S, \{\rho_S^{\theta}\} \rangle$ and $\mathcal{E}' = \langle \Theta, \mathcal{H}_{S'}, \{\sigma_{S'}^{\theta}\} \rangle$
- information ordering: $\mathcal{E} \succeq \mathcal{E}'$ iff $\mathbb{E}_g[\mathcal{E}] \ge \mathbb{E}_g[\mathcal{E}']$ for all g
- *E* ' iff there exists a quantum statistical morphism (essentially, a PTP map) *M* : L(*H_S*) → L(*H_{S'}*) such that *M*(*ρ*^θ_S) = σ^θ_{S'} for all θ
- complete information ordering: E ≥_c E' iff
 E ⊗ F ≿ E' ⊗ F for all ancillary models F (in fact, one informationally complete model suffices)
- $\mathcal{E} \succeq_c \mathcal{E}'$ iff there exists a **CPTP map** $\mathcal{N} : \mathsf{L}(\mathcal{H}_S) \to \mathsf{L}(\mathcal{H}_{S'})$ such that $\mathcal{N}(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$ for all θ

14/19

• if \mathcal{E}' is abelian, then $\mathcal{E} \succeq_c \mathcal{E}'$ iff $\mathcal{E} \succeq \mathcal{E}'$

Comparison of Quantum Channels 1/2

Definition (Quantum Decoding Problems)

Given a quantum channel (CPTP map) $\mathcal{N} : A \to B$, a quantum decoding problem is defined by a bipartite state ω_{RA} and the payoff function is the optimum singlet fraction:

$$\mathbb{E}_{\omega}[\mathcal{N}] \stackrel{\text{\tiny def}}{=} \max_{\mathcal{D}} \langle \Phi_{R\bar{R}}^+ | (\mathsf{id}_R \otimes \mathcal{D}_{B \to \bar{R}} \circ \mathcal{N}_{A \to B})(\omega_{RA}) | \Phi_{R\bar{R}}^+ \rangle$$

Comparison of Quantum Channels 2/2

Theorem (FB, 2016)

Given two quantum channels $\mathcal{N} : A \to B$ and $\mathcal{N}' : A \to B'$, the following are equivalent:

- 1. **output degradability**: there exists CPTP map C: $\mathcal{N}' = C \circ \mathcal{N};$
- 2. coherence preorder: for any bipartite state ω_{RA} , $\mathbb{E}_{\omega}[\mathcal{N}] \geq \mathbb{E}_{\omega}[\mathcal{N}']$, that is, $H_{\min}(R|B)_{(\mathrm{id}\otimes\mathcal{N})(\omega)} \leq H_{\min}(R|B')_{(\mathrm{id}\otimes\mathcal{N}')(\omega)}$.

 \rightsquigarrow applications to the theory of open quantum systems dynamics and, by adding symmetry constraints, to quantum thermodynamics

Application to Open Quantum Systems Dynamics

Discrete-Time Stochastic Processes

- Let x_i , for i = 0, 1, ..., index the state of a system at time $t = t_i$
- if the system can be initialized at time $t = t_0$, the process is fully described by the conditional distribution $p(x_N, \ldots, x_1 | x_0)$
- if the system evolving is quantum, we only have a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i=1,...,N}$
- the process is divisible if there exist channels $\mathcal{D}^{(i)}$ such that $\mathcal{N}^{(i+1)} = \mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$ for all i
- problem: to provide a fully information-theoretic characterization of divisibility

Divisibility as "Quantum Information Flow"

Theorem (2016-2018)

Given an initial open quantum system Q_0 , a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \ge 1}$ is divisibile if and only if, for any initial state ω_{RQ_0} ,

 $H_{\min}(R|Q_1) \leq H_{\min}(R|Q_2) \leq \cdots \leq H_{\min}(R|Q_N) .$

Conclusions

Conclusions

- the theory of statistical comparison studies morphisms (preorders) of one "statistical structure" X into another "statistical structure" Y
- equivalent conditions are given in terms of (finitely or infinitely many) monotones, e.g., $f_i(X) \ge f_i(Y)$
- such monotones shed light on the "resources" at stake in the operational framework at hand
- in a sense, statistical comparison is complementary to SDP, which instead searches for *efficiently computable* functions like f(X, Y)
- however, SDP does not provide much insight into the resources at stake (and not all statistical comparisons are equivalent to SDP!)

