The Partial Transpose and its Relation to Freeness

Jamie Mingo (Queen's)

joint work with M. Popa and O. Arizmendi, arXiv:1706.06711

May 20, MAQIT 2019, SNU, Korea

inspiration: Aubrun (2012), Banica - Nechita (2013)

- $G_{1}, \ldots, G_{d_{1}}$ are $d_{2} \times p$ random matrices where $G_{i}=\left(g_{j k}^{(i)}\right)_{j k}$ and $g_{j k}^{(i)}$ are complex Gaussian $\mathcal{N}(0,1)$ random variables
- the random variables $\left\{g_{j k}^{(i)}\right\}_{i, j, k}$ are independent.
- $W=\frac{1}{d_{1} d_{2}}\binom{\frac{G_{1}}{\vdots}}{\frac{G_{d_{1}}}{}}\left(G_{1}^{*}|\cdots| G_{d_{1}}^{*}\right)=\frac{1}{d_{1} d_{2}}\left(G_{i} G_{j}^{*}\right)_{i j}$
is a $d_{1} d_{2} \times d_{1} d_{2}$ Wishart matrix, $\frac{p}{d_{1} d_{2}} \longrightarrow c, W \xrightarrow{\mathcal{D}} \mathrm{MP}_{c}$
- $W^{\top}=\left(d_{1} d_{2}\right)^{-1}\left(G_{j} G_{i}^{*}\right)_{i j}$ partial transpose
[Au] $p, d_{1}, d_{2} \rightarrow \infty \Rightarrow W^{\top} \xrightarrow{\mathcal{D}}$ semi-circular: centre c, radius c
$[\mathrm{B}-\mathrm{N}] d_{1}$ fixed, $p, d_{2} \rightarrow \infty \Rightarrow W^{\top} \xrightarrow{\mathcal{D}} \mathrm{MP}_{\frac{c d_{1}\left(d_{1}+1\right)}{2}} \boxplus\left(-\mathrm{MP}_{\frac{c d_{1}\left(d_{1}-1\right)}{2}}\right)$

free cumulants

－$W^{\top}=\left(d_{1} d_{2}\right)^{-1}\left(G_{j} G_{i}^{*}\right)_{i j}$ partial transpose
－$W \xrightarrow{\mathcal{D}} w \in \mathrm{MP}_{c}, W^{\top} \xrightarrow{\mathcal{D}} w^{\top}$
－d_{1} fixed，$\left.p, d_{2} \rightarrow \infty \Rightarrow w^{\top} \in \operatorname{MP}_{\frac{c d_{1}\left(d_{1}+1\right)}{2}} ⿴ 囗 十 \operatorname{MP}_{\left.\frac{c_{1}\left(d_{1}-1\right)}{2}\right)}\right)$
－given $\mu \in \mathcal{M}(\mathbb{R})$ ，a probability measure on \mathbb{R} ，we let $G(z)=\int(z-t)^{-1} d \mu(t)$ be the Cauchy transform of μ and $R(z)=G^{\langle-1\rangle}(z)-z^{-1}=\kappa_{1}+\kappa_{2} z+\kappa_{3} z^{2}+\cdots$
－$\left\{k_{n}\right\}_{n}$ are the free cumulants of μ
－if $\mu=$ semi－circle with centre c and radius c ，then $\kappa_{1}=\kappa_{2}=c$ and $\kappa_{n}=0$ for $n \geqslant 3$
－if $\mu \in \mathrm{MP}_{c}$ then $\kappa_{n}=c(\forall n)$
－if $\left.\mu \in \operatorname{MP}_{\frac{c d_{1}\left(d_{1}+1\right)}{2}} ⿴ 囗 十 \mathrm{MP}_{\frac{c d_{1}\left(d_{1}-1\right)}{2}}\right)$ then for odd $n, \kappa_{n}=c d_{1}$ and for even $n, \kappa_{n}=c d_{1}^{2}=c d_{1}+c d_{1}+\cdots+c d_{1}$
－（ d_{1} odd）can we write w^{\top} as a sum of $\left(d_{1}+1\right) / 2$ free operators $w^{\top}=x_{0}+x_{1}+\cdots+x_{\left(d_{1}-1\right) / 2}$ with $\kappa_{n}^{\left(x_{0}\right)}=c d_{1}$ $(\forall n)$ ，and for $i \geqslant 1 \kappa_{2 n}^{\left(x_{i}\right)}=2 c d_{1}$ and $\kappa_{2 n-1}^{\left(x_{i}\right)}=0$ ？

the answer when $d_{1}=5$

$$
\begin{aligned}
& w^{\top}=\left(\begin{array}{ccccc}
w_{11} & 0 & & & \\
0 & w_{22} & 0 & & \\
& 0 & w_{33} & 0 & \\
& & 0 & w_{44} & 0 \\
& & & 0 & w_{55}
\end{array}\right) \\
& +\left(\begin{array}{ccccc}
0 & w_{21} & & & w_{51} \\
w_{12} & 0 & w_{32} & & \\
& w_{23} & 0 & w_{43} & \\
& & w_{34} & 0 & w_{54} \\
w_{15} & & & w_{45} & 0
\end{array}\right) \\
& +\left(\begin{array}{ccccc}
0 & & w_{31} & w_{41} & 0 \\
& 0 & & w_{42} & w_{52} \\
w_{13} & & 0 & & w_{53} \\
w_{34} & w_{24} & & 0 & \\
0 & w_{15} & w_{35} & & 0
\end{array}\right)
\end{aligned}
$$

freeness and the computation of cumulants

- $\mathcal{A}=$ unital algebra over $\mathbf{C}, \varphi: \mathcal{A} \xrightarrow{\text { linear }} \mathbf{C}, \varphi(1)=1,(\mathcal{A}, \varphi)$ is a non-commutative probability space
- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \subseteq \mathcal{A}$, unital subalgebras, are freely independent if whenever $a_{1}, \ldots, a_{n} \in \mathcal{A}$ with $\varphi\left(a_{i}\right)=0$ and $a_{i} \in \mathcal{A}_{j_{i}}$ with $j_{1} \neq j_{2} \neq \cdots \neq j_{n}$, we have $\varphi\left(a_{1} \cdots a_{n}\right)=0$
- if \mathcal{A} is a C^{*}-algebra and $a=a^{*} \in \mathcal{A}, a$ has a distribution, μ_{a}, with respect to $\varphi: \int f(t) \mu_{a}(t)=\varphi(f(a))$ (usual functional calculus); such an element has a Cauchy transform, a R-transform: $R(z)=G^{\langle-1\rangle}(z)-z^{-1}=\kappa_{1}+\kappa_{2} z+\cdots$, and free cumulants: $\left\{\kappa_{n}^{(a)}\right\}_{n}$
- if a_{1} and a_{2} are free then $R_{a_{1}+a_{2}}=R_{a_{1}}+R_{a_{2}}$, i.e.
$\kappa_{n}^{\left(a_{1}+a_{2}\right)}=\kappa_{n}^{\left(a_{1}\right)}+\kappa_{n}^{\left(a_{2}\right)}$
- conversely: $a_{1}, \ldots, a_{s} \in \mathcal{A}$ are free \Leftrightarrow for all $i_{1}, \ldots, i_{n} \in[s]$ we have $\kappa_{n}\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right)=0$ unless $i_{1}=i_{2}=\cdots=i_{n}$
- given cumulants $\left\{\kappa_{n}\right\}_{n}$ we set $R(z)=\kappa_{1}+\kappa_{2} z+\kappa_{3} z^{2}+\cdots$ and then $G^{\langle-1\rangle}(z)=R(z)+z^{-1}$, and from this a, we obtain a density $\rho(t)=-\pi^{-1} \operatorname{Im}\left(G\left(t+0^{+} i\right)\right)$

freeness and the transpose in the regime: $d_{1}, d_{2} \rightarrow \infty$

- Voiculescu (1991) showed that independence and unitary invariance for two ensembles implies asymptotic freeness
- work of Emily Redelmeier on real second order freeness made it clear that the transpose plays an important role in freeness
- Mihai Popa and I (2016) showed that unitarily invariant matrices are asymptotically free from their transposes (\& in fact real second order free)
- Theorem. In the regime $d_{1}, d_{2} \rightarrow \infty, W, W^{\top}, W^{\Gamma}$, and W^{T} are asymptotically free
- Theorem. In the regime $d_{1}, d_{2} \rightarrow \infty, U_{N}, U_{N}^{\top}, U_{N}^{\Gamma}$, and U_{N}^{T} are asymptotically $*$-free, for a $N \times N$ Haar distributed random unitary matrix U_{N}

R-diagonal and even operators: Nica-Speicher (1995)

- in a *-probability space (\mathcal{A}, φ) an operator a is R-diagonal if $\kappa_{n}\left(a^{\left(\epsilon_{1}\right)}, a^{\left(\epsilon_{2}\right)}, \ldots, a^{\left(\epsilon_{n}\right)}\right)=0$ unless: n is even and $\epsilon_{1}=-\epsilon_{2}=\epsilon_{3}=\cdots=-\epsilon_{n}$, where $a^{(-1)}=a^{*}$ and $a^{(1)}=a$
- if x and y are free and semi-circular then $x+i y$ is R-diagonal
- if U is a Haar distributed orthogonal or unitary matrix and $U \xrightarrow{\mathcal{D}} u$, then u is R-diagonal
- if $x=x^{*}=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in M_{2}(\mathcal{A})$ is free from the matrix units $\left\{e_{i j}\right\}_{i j}$ then x_{12} is R-diagonal
[THM] if $x=x^{*}=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in M_{2}(\mathcal{A})$ is free from the matrix units $\left\{e_{i j}\right\}_{i j}$ then $\left(\begin{array}{cc}x_{11} & 0 \\ 0 & x_{22}\end{array}\right)$ and $\left(\begin{array}{cc}0 & x_{21} \\ x_{12} & 0\end{array}\right)$ are free

R-cyclic operators: Nica-Shlyakhtenko-Speicher (1999)

- if (\mathcal{A}, φ) is a *-probability space then $\left(M_{n}(\mathcal{A}), \varphi\right)$ is a *-probability space where $\varphi(x)=n^{-1} \varphi\left(x_{11}+\cdots+x_{n n}\right)$
- if $x=\left(x_{i j}\right)_{i j} \in M_{n}(\mathcal{A})$ is such that

$$
\kappa_{n}\left(x_{i_{1} j_{1}}, x_{i_{2} j_{2}}, x_{i_{3} j_{3}}, \ldots, x_{i_{n} j_{n}}\right)=0
$$

unless $j_{1}=i_{2}, j_{2}=i_{3}, \ldots, j_{n}=i_{1}$, then we say c is R-cyclic

- if $x=M_{n}(\mathcal{A})$ and x is free from matrix units $\left\{e_{i j}\right\}_{i j=1}^{n}$ then x is R-cyclic
- if $\left\{X_{N}\right\}_{N}$ is a ensemble of random matrices with $X_{N} \xrightarrow{\mathcal{D}} x$ and which is asymptotically free from deterministic matrices and we write $N=n \times d$ with $d \rightarrow \infty$ and n is fixed, then $x \in M_{n}(\mathcal{A})$ is R-cyclic

diagonal decompositions

- suppose $x \in M_{n}(\mathcal{A})$, we shall write $x=y_{0}+y_{1}+\cdots+y_{n-1}$, we call this the diagonal decomposition of x, where

$$
y_{0}=\left(\begin{array}{cccc}
x_{11} & 0 & \cdots & 0 \\
0 & x_{22} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & x_{n n}
\end{array}\right) y_{1}=\left(\begin{array}{ccccc}
0 & x_{12} & 0 & \cdots & 0 \\
0 & 0 & x_{23} & \cdots & 0 \\
\vdots & \vdots & & & \vdots \\
0 & 0 & & 0 & x_{n-1, n} \\
x_{n 1} & 0 & & 0 & 0
\end{array}\right)
$$

and in general

$$
y_{k}=\left(\begin{array}{cccccc}
0 & \cdots & x_{1 k} & 0 & \cdots & 0 \\
0 & \cdots & 0 & x_{2, k+1} & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & & & & & 0 \\
x_{n-k+2,1} & 0 & & & & x_{n-k+1, n} \\
0 & x_{n-k+3,2} & 0 & & \cdots & 0 \\
\vdots & \vdots & \ddots & & & \\
0 & 0 & \cdots & x_{n, k-1} & 0 & \cdots
\end{array}\right.
$$

main theorem

- let (\mathcal{A}, φ) be a *-probability space and $\left(M_{n}(\mathcal{A}), \varphi\right)$ the corresponding matrix algebra
- let $\mathcal{D}_{n} \subseteq M_{n}(\mathcal{A})$ be the subalgebra of diagonal scalar matrices, and let $\tilde{\varphi}: M_{n}(\mathcal{A}) \rightarrow \mathcal{D}_{n}$ be the conditional expectation given by $\tilde{\varphi}(A)=\operatorname{diag}\left(\varphi\left(a_{11}\right), \ldots, \varphi\left(a_{n n}\right)\right)$
- suppose $x \in M_{n}(\mathcal{A})$ is R-cyclic, and we write $x^{t}=y_{0}+y_{1}+\cdots+y_{n-1}$ in its diagonal decomposition
- then when n is odd

$$
y_{0},\left\{y_{1}, y_{n-1}\right\},\left\{y_{2}, y_{n-2}\right\}, \ldots,\left\{y_{(n-1) / 2}, y_{(n+1) / 2}\right\}
$$

are $\tilde{\varphi}$-free

- and when n is even

$$
y_{0},\left\{y_{1}, y_{n-1}\right\},\left\{y_{2}, y_{n-2}\right\}, \ldots,\left\{y_{(n-2) / 2}, y_{(n+2) / 2}\right\}, y_{n / 2}
$$

are $\tilde{\varphi}$-free

- if $x=x^{*}$ then $y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}$ are $\tilde{\varphi}$-*-free and y_{1}, y_{2}, \ldots, y_{n-1} are $\tilde{\varphi}$-R-diagonal

a word about the proof

- for $d \in \mathcal{D}_{n}$ with $\operatorname{Im}(d)>0$, let $\widetilde{G}(d)=\tilde{\varphi}\left((d-x)^{-1}\right) \in \mathcal{D}_{n}$
- from $\widetilde{G}^{\langle-1\rangle}$ we get the \mathcal{D}_{n}-valued cumulants $\left\{\tilde{\kappa}_{n}\right\}_{n}$, we shall use these to prove freeness over \mathcal{D}
- let s be the matrix that cyclically permutes (backwards) the standard basis of \mathbf{C}^{n},

$$
s=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & & \vdots \\
0 & 0 & \cdots & & 0 & 1 \\
1 & 0 & \cdots & & 0 & 0
\end{array}\right) .
$$

- suppose $x \in M_{n}(\mathcal{A})$ and $x=y_{0}+\cdots+y_{n-1}$ is its diagonal decomposition. If we let $a_{k}=y_{k} s^{-k}$ then a_{k} is the diagonal matrix $\operatorname{diag}\left(x_{1, k+1}, x_{2, k+2}, \ldots, x_{d, k}\right)$.

$$
x=y_{0}+\cdots+y_{n-1}=a_{0} s^{0}+a_{1} s^{1}+a_{2} s^{2}+\cdots+a_{n-1} s^{n-1}
$$

example: when $n=3$

$$
\begin{gathered}
\rightarrow x=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right), s=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
y_{0}=\left(\begin{array}{ccc}
x_{11} & 0 & 0 \\
0 & x_{22} & 0 \\
0 & 0 & x_{33}
\end{array}\right), y_{1}=\left(\begin{array}{ccc}
0 & x_{12} & 0 \\
0 & 0 & x_{23} \\
x_{31} & 0 & 0
\end{array}\right), y_{2}=\left(\begin{array}{ccc}
0 & 0 & x_{13} \\
x_{21} & 0 & \\
0 & x_{32} & 0
\end{array}\right) \\
a_{0}=\left(\begin{array}{ccc}
x_{11} & 0 & 0 \\
0 & x_{22} & 0 \\
0 & 0 & x_{33}
\end{array}\right), a_{1}=\left(\begin{array}{ccc}
x_{12} & 0 & 0 \\
0 & x_{23} & 0 \\
0 & 0 & x_{31}
\end{array}\right), a_{2}=\left(\begin{array}{ccc}
x_{13} & 0 & 0 \\
0 & x_{21} & 0 \\
0 & 0 & x_{32}
\end{array}\right) \\
x=y_{0}+y_{1}+y_{2}=a_{0} s^{0}+a_{1} s^{1}+a_{2} s^{2}
\end{gathered}
$$

main technical lemmas

- let $a_{j, k}=s^{k} a_{j} s^{-k}$. Then $a_{j, k}$ is the diagonal matrix

$$
a_{j, k}=\operatorname{diag}\left(x_{j+k+1, k+1}, x_{j+k+2, k+2}, \ldots, x_{j+k+d, k+d}\right)
$$

- for $i_{1}, \ldots, i_{k} \in[n]$ and any $d_{1}, \ldots, d_{k-1} \in \mathcal{D}_{n}$ we let $d_{i, l}=s^{-l} d_{i} s^{l}$
[lem. 1] then we have

$$
\begin{aligned}
& \tilde{\kappa}_{k}\left(a_{i_{1}} s^{i_{1}} d_{1}, \ldots, a_{i_{k-1}} s^{i_{k-1}} d_{k-1}, a_{i_{k}} s^{i_{k}}\right) \\
& \quad=\tilde{\kappa}_{n}\left(a_{i_{1}}, a_{i_{2}, i_{1}}, \ldots, a_{i_{n}, i_{1}+\cdots+i_{n-1}}\right) d_{1, i_{1}} \cdots d_{k-1, i_{1}+\cdots+i_{k-1}}
\end{aligned}
$$

[lem. 2] Let $d_{1}, \ldots, d_{k-1} \in \mathcal{D}_{n}$ then

$$
\tilde{\kappa}_{k}\left(y_{i_{1}} d_{1}, \ldots, y_{i_{k-1}} d_{k-1}, y_{i_{k}}\right)=0
$$

unless either $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{k} \equiv 0(\bmod n)$ or, n is even and we have $i_{l}+i_{l+1} \equiv 0(\bmod n)$ for $1 \leqslant l \leqslant n-1$.

