Qualifying Exam for MS

(Differentiable Manifolds)

1. Let σ be the restriction of the 1-form $x_{1} d x_{2}-x_{2} d x_{1}+x_{3} d x_{4}-x_{4} d x_{3}$ on \mathbb{R}^{4} to the standard unit sphere S^{3}. Does there exist a point in S^{3} where σ vanishes? (10 points)
2. If X is any closed connected subset of the plane, and U is a bounded connected component of $\mathbb{R}^{2}-X$, show that every closed 1-form on U is exact. (10 points)
3. A vector field is said to be complete if its integral curves are defined for all time. On the plane \mathbb{R}^{2}, is the vector field $x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$ complete? (10 points)
4. Let $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x^{2}+\frac{y^{2}}{4}=1\right.\right\}$. Compute

$$
\int_{\gamma} \frac{(y-1) d x-x d y}{x^{2}+(y-1)^{2}}
$$

where γ is oriented counter-clockwise with respect to the origin. (10 points)
5. Let Σ be a compact oriented regular surface without boundary in \mathbb{R}^{3}. Does there exist a point p on Σ such that the Gaussian curvature $K(p)$ is positive? (10 points)
6. Are there three vector fields X, Y, and Z on the 3 -sphere S^{3}, which are linearly independent at every point in S^{3}. (10 points)

후기

1여러가지 풀이가 있을 수 있다. S^{3} 의 전 $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ 에서 전공 고 $T S^{3}{ }_{x}$ 는

$$
\left\{v \in \mathbb{R}^{4} \mid x \cdot v=0\right\}
$$

으로 생각학 수 있다. 특히

$$
J x:=\left(-x_{2}, x_{1},-x_{4}, x_{3}\right)
$$

는 정공간의 한 언소이고,

$$
\sigma_{x}(J x)=-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)=-1 \neq 0
$$

이므로 $\sigma_{x} \neq 0$ 이다. 정닪륡 8% 아!
2 거창한 호몰로지 또는 코 호몰로지 이론을 쓹 수도 있지만, 가능한 맨 손으로 해곅하는 것도 좋은.

First, one shows that in U all loops are contractible (otherwise X is not connected) Then, if we denote the one form by σ and fix $x_{0} \in U$. For any $x \in U$, choose a smooth path γ connecting x_{0} and x, one can set $f=\int_{\gamma} \sigma$ then f is well-defined and $d f=\gamma$.

3자주 나오는 문제. 적운곡선을 이해하지 못하면 직 엉을 아꿀 생각을 하 는 것이 좋다. 정단륜 35%

4 doㅏㄴ년 전 문제를 우 호 를 아꾸어 낸 것. 정당은 -2π. 정단륜 46%
5곡몁의 문류엉을 거창하게 쓰는 학생득이 있시만, 그런 것이 하나도 픽 요 없나. 그저 한 전에서 가장 먹리 떡어져 있는 전을 모면 런다. 정당륡 45%

6산차언 구는 Lie 군이고, 모든 Lie 군을 이러한성질을 가지고 있다는 것 은 긴게 악 수 있다. 한 전에서의 인차독린인 멕터득윽 다른 곳에 옮겨 신으
 서 아주 유명한 문제이고 여러언 출제린 문제이다. 사식 n 차언 구 S^{n} 의 모든 전에서 인차독린인 n 개의 엑터장이 있는 경우는 $n=0,1,3,7$ 뿐이다. 이 문제는 네 개의 division algebra

$$
\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}
$$

아 간련 있고, 따라서 한쪽 땅향을 모는 것은 신다. 정답륡 0% T T

