Entrance Exam. (Geometry \& Topology for Ph.D. Course)

 2014. 5. 2.1. Find all Betti numbers of the 3 -dimensional torus T^{3}.
2. What is the dimension of the Grassmann manifold of planes in 5 -dimensional Euclidean space?
3. Where is the center of mass of a tetrahedron?
4. Answer ' Y ' if yes, or ' N ' if no.
(i) () Is the unit tangent bundle of S^{2} diffeomorphic to SO_{3} ?
(ii) () Is SO_{3} diffeomorphic to the projective space P^{3} ?
(iii) () Is the projective space P^{4} orientable?
(iv) () Is the antipodal map on the 2 -sphere orientation preserving?
(v) () Is the antipodal map on the 3 -sphere orientation preserving?
(vi) () If $f: \mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}-\{(0,0)\}\right)$ is a continuous map, do there exist continuous maps $a, b: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
f(x, y)=(a(x, y) \cos (b(x, y)), a(x, y) \sin (b(x, y)))
$$

for all $(x, y) \in \mathbb{R}^{2}$.
(vii) () Can you integrate a real valued continuous function defined on a compact manifold?
(viii) () Is any integral curve of any vector field on a compact smooth manifold without boundary defined for all real numbers?

