기하학 고사

서울대학교 2010학년도 대학원 신입생 후기 모집 (석사과정) 2010년 5월 28 일(금)

1. Let $\gamma(t)$ be a regular curve in \mathbb{R}^{3} with the curvature k at $t=0$. Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map given by the matrix

$$
3\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What is the curvature of the curve $S(\gamma(2 t))+(0,0,1)$ at $t=0$?

2 . Let κ denote the curvature function of the plane curve Γ given by the equation $x^{2}+4 y^{2}=1$. Compute the total curvature $\int_{\Gamma} \kappa d s$.
3. Let S be the surface in \mathbb{R}^{3} given by the equation

$$
x^{2}+y^{2}-z^{2}=1 .
$$

(a) Draw the surface S.
(b) Does S have a point with zero Gaussian curvature? Does S have a point with positive Gaussian curvature?
4. Let $H=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, z>0\right\}$ be the hemisphere.
(a) Does there exist a conformal (i.e., angle preserving) map from H onto an open subset of \mathbb{R}^{2} ?
(b) Does there exist an equi-areal (i.e., area preserving) map from H onto an open subset of \mathbb{R}^{2} ?
(c) Does there exist an isometry from H onto an open subset of \mathbb{R}^{2} ?

