집합과 수리논리: 기말 고사 2013년 6월 12일 (수) 11:00-12:15 (총점 100 점)

소속:	학번:	이름:	점수:
문 5: 48점 (For a set A, let A	(Need Justifications): 각 12점, 문 4: 4점, 각 3점: 오답 0점, 무답 1점, 정답 3점) * be the set of all finite sequences of elements in <i>puipotent</i> if there exists a bijection between them.	better score if your n	aber in the box below. You will get a number is closer to 'half of the average' o submitted by the examinees.
so that $a <$	t $A = \{a, b\}$. Define an ordering relation $<$ on A b. This ordering induces the <i>dictionary ordering</i> * a well-ordered set with this induced ordering?	 f(n)² + 1 for al () Let S be an ab abelian group C 	unction $f : \mathbb{Z} \to \mathbb{Z}$ such that $f(n+1) =$ l $n \in \mathbb{Z}$. elian semi-group. Then there exists an G and a semi-group homomorphism $ihat for any abelian group H and any$

2. Let $H: A^* \to A$ be a function. Suppose f and g are sequences of elements of A such that $f(n) = H(f \upharpoonright n)$ and $g(n) = H(g \upharpoonright$ n) for all $n \in \omega$. Is it true that f = g?

- 3. Does there exist a function $\mu: \mathcal{P}\mathbb{R} \to [0,\infty]$ with the following properties?
 - (a) for any interval [a, b] in \mathbb{R} , $\mu([a, b]) = b a$.
 - (b) $\mu(S_0 \cup S_1 \cup \cdots) = \mu(S_0) + \mu(S_1) + \cdots$ for any disjoint subsets S_0, S_1, \ldots of \mathbb{R} .
 - (c) for any subset S of \mathbb{R} and for any $x \in \mathbb{R}$, $\mu(S+x) = \mu(S)$, where $S + x = \{y + x \mid y \in S\}.$

- a of

 - an i: ny semi-group homomorphism $f: S \to H$ there exists a group homomorphism $\overline{f}: G \to H$ such that $f = \overline{f} \circ i$.
 - () Any two complete ordered fields are isomorphic.
 - () The set of all functions from an infinite set A into A is equipotent to $\mathcal{P}A$.
 - () The set of all functions from an infinite set A into $\mathcal{P}A$ is equipotent to $\mathcal{P}A$.
 - () If there exist injections from A into B, and from B into A, then there exists a bijection from A onto B.
 - () If there exist surjections from A onto B, and from Bonto A, then there exists a bijection from A onto B.
 - () For any infinite cardinal κ , $\kappa^2 = \kappa$.
 - () For any cardinal κ , there exists a cardinal λ such that $\kappa < \lambda$.
 - () The cardinality of the set of ordinals equipotent to ω is the first uncountable cardinal.
 - () Two sets are equipotent if and only if they have the same cardinality.
 - () ZF can not determine whether the continuum hypothesis is true or not.
 - () There exists a statement which can be proved in ZF but not in PA.
 - () Let α be an ordinal and $x \notin \alpha$. Then the ordered sum $\alpha \cup \{x\}$ is an ordinal if and only if $x = \alpha$.
 - () The union of any set of ordinals is an ordinal.
 - () Any set of ordinals is an ordinal.
- 6. Write 3 statements which are equivalent to the Axiom of Choice.

모범답안

¹No. It has an infinitely decreasing sequence $b, ab, aab, aaab, \ldots$.

²Yes. To see this, let $S = \{n \in \omega \mid f(n) = g(n)\}$. Suppose $n \in \omega$ and $k \in S$ for any k < n. Then $f(n) = H(f \upharpoonright n) = H(g \upharpoonright n) = g(n)$. Thus $n \in S$. Now the induction principle implies $S = \omega$.

 $^{3}\mathrm{No}$

 $^5\mathrm{All}$ T except the First and the Last.

⁶WO (All set can be well-orderd.), ZL (If any chain in a partially ordered set A has an upper bound, A has a maximal element.), TC (For any sets A and B, there exists an injection either from A into B or from B into A.), ...