배점: 문 $1,2,3,6$ (Need Justifications): 각 12 점, 문 4: 4점, 문 5: 48점 (각 3점: 오답 0 점, 무답 1 점, 정답 3 점)
For a set A, let A^{*} be the set of all finite sequences of elements in A. Two sets are equipotent if there exists a bijection between them. We assume ZFC.

1. For $a \neq b$, let $A=\{a, b\}$. Define an ordering relation $<$ on A so that $a<b$. This ordering induces the dictionary ordering on A^{*}. Is A^{*} a well-ordered set with this induced ordering?
2. Let $H: A^{*} \rightarrow A$ be a function. Suppose f and g are sequences of elements of A such that $f(n)=H(f \upharpoonright n)$ and $g(n)=H(g \upharpoonright$
n) for all $n \in \omega$. Is it true that $f=g$?
3. Does there exist a function $\mu: \mathcal{P} \mathbb{R} \rightarrow[0, \infty]$ with the following properties?
(a) for any interval $[a, b]$ in $\mathbb{R}, \mu([a, b])=b-a$.
(b) $\mu\left(S_{0} \cup S_{1} \cup \cdots\right)=\mu\left(S_{0}\right)+\mu\left(S_{1}\right)+\cdots$ for any disjoint subsets S_{0}, S_{1}, \ldots of \mathbb{R}.
(c) for any subset S of \mathbb{R} and for any $x \in \mathbb{R}, \mu(S+x)=\mu(S)$, where $S+x=\{y+x \mid y \in S\}$.
4. Write a natural number in the box below. You will get a better score if your number is closer to 'half of the average' of the natural numbers submitted by the examinees.
5. In '()' write T if true, F if false.
() Ther exists a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(n+1)=$ $f(n)^{2}+1$ for all $n \in \mathbb{Z}$.
() Let S be an abelian semi-group. Then there exists an abelian group G and a semi-group homomorphism i : $S \rightarrow G$ such that for any abelian group H and any semi-group homomorphism $f: S \rightarrow H$ there exists a group homomorphsm $\bar{f}: G \rightarrow H$ such that $f=\bar{f} \circ i$.
() Any two complete ordered fields are isomorphic.
() The set of all functions from an infinite set A into A is equipotent to $\mathcal{P} A$.
() The set of all functions from an infinite set A into $\mathcal{P} A$ is equipotent to $\mathcal{P} A$.
() If there exist injections from A into B, and from B into A, then there exists a bijection from A onto B.
() If there exist surjections from A onto B, and from B onto A, then there exists a bijection from A onto B.
() For any infinite cardinal $\kappa, \kappa^{2}=\kappa$.
() For any cardinal κ, there exists a cardinal λ such that $\kappa<\lambda$.
() The cardinality of the set of ordinals equipotent to ω is the first uncountable cardinal.
() Two sets are equipotent if and only if they have the same cardinality.
() ZF can not determine whether the continuum hypothesis is true or not.
() There exists a statement which can be proved in ZF but not in PA.
() Let α be an ordinal and $x \notin \alpha$. Then the ordered sum $\alpha \cup\{x\}$ is an ordinal if and only if $x=\alpha$.
() The union of any set of ordinals is an ordinal.
() Any set of ordinals is an ordinal.
6. Write 3 statements which are equivalent to the Axiom of Choice.
${ }^{1}$ No. It has an infinitely decreasing sequence $b, a b, a a b, a a a b, \ldots$
${ }^{2}$ Yes. To see this, let $S=\{n \in \omega \mid f(n)=g(n)\}$. Suppose $n \in \omega$ and $k \in S$ for any $k<n$. Then $f(n)=H(f \upharpoonright n)=$ $H(g \upharpoonright n)=g(n)$. Thus $n \in S$. Now the induction principle implies $S=\omega$.
${ }^{3} \mathrm{No}$
${ }^{5}$ All T except the First and the Last.
${ }^{6} \mathrm{WO}$ (All set can be well-orderd.), ZL (If any chain in a partially ordered set A has an upper bound, A has a maximal element.), TC (For any sets A and B, there exists an injection either from A into B or from B into A.), ...
