집합과 수리논리: 중간 고사 2013 년 4월 22일 (월) 11:00-12:15 (총점 104 점)

소속:	학번:	이름:	점수:
배점: 문 1~ 6 (Need Justifications): 각 10점, 문 7: 8점, 문 8: 각 2점(오답: 0점,무답 1점,정답 2점)		7. Let w be the ordered pair (a, b) . Simplify the following. (a) $\bigcup w$ (e) $\bigcup \bigcap w$	
1. Show that for any set A , there exists no bijection of A onto		(b) $\bigcup \bigcup w$	(f) $\bigcap \bigcup w$
$\mathcal{P}A.$		(c) ∩ <i>w</i>	(g) $\bigcup w - \bigcap w$
		(d) $\bigcap \bigcap w$	(h) $\bigcap w - \bigcup w$
		8. In '()' write T if true, F if false.	
		() $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
		() $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
2. Let A be a set	t of disjoint open disks in the plane \mathbb{R}^2 . Is A	() $A - (B - C) = (A - B) \cup (A \cap C)$	
countable?		() $(A - B) - C = A - (B \cup C)$	
		() $(A \cup B) - C = (A - C) \cup (B - C)$	
		() $\bigcup \varnothing = \varnothing$	
		() For any set $A, A^{\varnothing} = \{\emptyset\}.$	
		() For any set A , there exists no injection from $\mathcal{P}A$ int	
3. Does $x^+ = y^+$ imply $x = y$?		А.	
3. Does $x^* = y^*$	mpby $x = y$:	() For any set $A, A \subseteq \mathcal{P}(\bigcup A)$.	
		() For any set x , there exists a set y such that $x \in y$.	
		() For any set x , there exists a set y such that $y \notin x$.	
		() There exists a set A of open intervals in \mathbb{R} such tha $\mathbb{Q} \subseteq \bigcup A \subset \mathbb{R}$.	
4. When $\bigcup x = f$]x ?	() There is a bijection from the Cantor's dust onto \mathbb{R}^{∞} = $\mathbb{R} \cup \mathbb{R}^2 \cup \mathbb{R}^3 \cup \cdots$.	
		() If f be a function defined on a natural number $n = \{0, 1, \dots, n-1\}$, then $\prod f \sim f(0) \times f(1) \times \dots \times f(n-1)$	
5. Let $(A, <)$ be a well-ordered set. For any $x \in A$, let $A_x :=$		 () The axiom of choice is equivalent to the following a sertion: If E is an equivalence relation on a set A an if π : A → A/E is the canonical projection, then there exists a function s : A/E → A such that π ∘ s = id_{A/E} 	
$\{y \in A \mid y < x\}$	$\{x\}$. Suppose S is a nonempty subset of A such $\{x \in A, A_x \subset S \text{ implies } x \in S. \text{ Is } S = A ?$	() $\mathcal{P}A = \mathcal{P}B$ implies $A = B$.	
		() $\bigcup A = \bigcup B$ implies $A = B$.	
		() $a \in B$ implies $\mathcal{P}a \in \mathcal{P}B$.	
		() I love Set Theory.	

6. Show that $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

모범답안

 $^2 {\rm Yes},$ since each disk contains a rational point.

³Supposer $x^+ = y^+$. If $x \neq y$, then we have $x \in y$ and $y \in x$. Thus the set $\{x, y\}$ is not well-founded. Thus the axiom of foundation implies x = y.

⁴Note that x cannot be the empty set. It holds if and only if x is a singleton. For, if x has distinct elements a and b, then there exists an element $y \in (a - b) \cup (b - a)$. Thus we have $y \in \bigcup x - \bigcap x$, a contradiction.

⁵NO, because If '⊂' is replaced by '⊆', then YES, because

⁷(a) {a, b} (b) $a \cup b$ (c) {a} (d) a (e) a (f) $a \cap b$ (g) {b} if $a \neq b, \emptyset$ if a = b. (h) \emptyset

 ${}^{8}T, T, \ldots, T, F, F, ?$