배점: 문 $1 \sim 6$ (Need Justifications): 각 10 점,
문 7: 8 점, 문 8: 각 2 점 (오답: 0 점, 무답 1 점, 정답 2 점)

1. Show that for any set A, there exists no bijection of A onto $\mathcal{P} A$.
2. Let A be a set of disjoint open disks in the plane \mathbb{R}^{2}. Is A countable?
3. Does $x^{+}=y^{+}$imply $x=y$?
4. When $\bigcup x=\bigcap x$?
5. Let $(A,<)$ be a well-ordered set. For any $x \in A$, let $A_{x}:=$ $\{y \in A \mid y<x\}$. Suppose S is a nonempty subset of A such that for any $x \in A, A_{x} \subset S$ implies $x \in S$. Is $S=A$?
6. Let w be the ordered pair (a, b). Simplify the following.
(a) $\bigcup w$ \qquad
(e) $\cup \cap w$ \qquad
(b) $\bigcup \bigcup w$ \qquad (f) $\cap \bigcup w$ \qquad
(c) $\cap w$ \qquad (g) $\bigcup w-\bigcap w$
(d) $\cap \cap w$ \qquad
\qquad
(h) $\bigcap w-\bigcup w$ \qquad
7. In '()' write T if true, F if false.
() $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
() $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
() $A-(B-C)=(A-B) \cup(A \cap C)$
() $(A-B)-C=A-(B \cup C)$
() $(A \cup B)-C=(A-C) \cup(B-C)$
() $\cup \varnothing=\varnothing$
() For any set $A, A^{\varnothing}=\{\varnothing\}$.
() For any set A, there exists no injection from $\mathcal{P} A$ into A.
() For any set $A, A \subseteq \mathcal{P}(\bigcup A)$.
() For any set x, there exists a set y such that $x \in y$.
() For any set x, there exists a set y such that $y \notin x$.
() There exists a set A of open intervals in \mathbb{R} such that $\mathbb{Q} \subseteq \bigcup A \subset \mathbb{R}$.
() There is a bijection from the Cantor's dust onto $\mathbb{R}^{\infty}=$ $\mathbb{R} \cup \mathbb{R}^{2} \cup \mathbb{R}^{3} \cup \cdots$.
() If f be a function defined on a natural number $n=$ $\{0,1, \ldots, n-1\}$, then $\prod f \sim f(0) \times f(1) \times \cdots \times f(n-1)$.
() The axiom of choice is equivalent to the following assertion: If E is an equivalence relation on a set A and if $\pi: A \rightarrow A / E$ is the canonical projection, then there exists a function $s: A / E \rightarrow A$ such that $\pi \circ s=\operatorname{id}_{A / E}$.
() $\mathcal{P} A=\mathcal{P} B$ implies $A=B$.
() $\bigcup A=\bigcup B$ implies $A=B$.
() $a \in B$ implies $\mathcal{P} a \in \mathcal{P} B$.
() I love Set Theory.
8. Show that $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

모범답안

${ }^{2}$ Yes, since each disk contains a rational point.
${ }^{3}$ Supposer $x^{+}=y^{+}$. If $x \neq y$, then we have $x \in y$ and $y \in x$. Thus the set $\{x, y\}$ is not well-founded. Thus the axiom of foundation implies $x=y$.
${ }^{4}$ Note that x cannot be the empty set. It holds if and only if x is a singleton. For, if x has distinct elements a and b, then there exists an element $y \in(a-b) \cup(b-a)$. Thus we have $y \in \bigcup x-\bigcap x$, a contradiction.
${ }^{5} \mathrm{NO}$, because If ' \subset ' is replaced by ' \subseteq ', then YES, because
${ }^{7}(\mathrm{a})\{a, b\} \quad$ (b) $a \cup b$ (c) $\{a\}$ (d) a (e) a (f) $a \cap b$ (g) $\{b\}$ if $a \neq b, \varnothing$ if $a=b$. (h) \varnothing
${ }^{8} \mathrm{~T}, \mathrm{~T}, \ldots, \mathrm{~T}, \mathrm{~F}, \mathrm{~F}, ?$

